PROJECT MANUAL
Volume 2

Issued to Bid

City of Santa Fe
Fire Department Station No. 2
5750 Alameda Frontage Road
Santa Fe, NM

10 March 2020
PROJECT MANUAL TABLE OF CONTENTS

VOLUME 1

PROCUREMENT AND CONTRACTING REQUIREMENTS GROUP

Division 00 Procurement and Contracting Requirements
Invitation to Bid (Separately Indexed)

SPECIFICATIONS GROUP

GENERAL REQUIREMENTS SUBGROUP
Division 01 General Requirements
01 1000 Summary
01 2100 Allowances
01 2200 Unit Prices
01 2300 Alternates
01 2500 Substitution Procedures
01 2600 Contract Modification Procedures
01 2900 Payment Procedures
01 3100 Project Management and Coordination
01 3200 Construction Progress Documentation.
01 3233 Photographic Documentation
01 3300 Submittal Procedures
01 4000 Quality Requirements
01 4200 References
01 5000 Temporary Facilities and Controls
01 6000 Product Requirements
01 7300 Execution
01 7419 Construction Waste Management and Disposal
01 7700 Closeout Procedures
01 7823 Operation and Maintenance Data
01 7839 Project Record Documents
01 7900 Demonstration and Training

FACILITY CONSTRUCTION SUBGROUP
Division 02 Existing Conditions
(Not Used)

Division 03 Concrete
03 1000 Concrete Forming and Accessories
03 1119 Insulated Concrete Forming
03 2000 Concrete Reinforcement
03 3000 Cast-in-Place Concrete

Division 04 Masonry
(Not Used)

Division 05 Metals
05 1000 Structural Steel
05 5000 Metal Fabrications
05 5119 Metal Grating Stairs
<table>
<thead>
<tr>
<th>Division</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>5213</td>
<td>Pipe and Tube Railings</td>
</tr>
<tr>
<td>05</td>
<td>5313</td>
<td>Bar Gratings</td>
</tr>
<tr>
<td>Division 06</td>
<td>Wood, Plastics and Composites</td>
<td></td>
</tr>
<tr>
<td>06.1000</td>
<td>Rough Carpentry</td>
<td></td>
</tr>
<tr>
<td>06.1719</td>
<td>Cross-Laminated Timber</td>
<td></td>
</tr>
<tr>
<td>06.1753</td>
<td>Shop-Fabricated Wood Trusses</td>
<td></td>
</tr>
<tr>
<td>06.1800</td>
<td>Glued-Laminated Construction</td>
<td></td>
</tr>
<tr>
<td>06.4100</td>
<td>Architectural Casework</td>
<td></td>
</tr>
<tr>
<td>06.4600</td>
<td>Wood Trim</td>
<td></td>
</tr>
<tr>
<td>Division 07</td>
<td>Thermal and Moisture Protection</td>
<td></td>
</tr>
<tr>
<td>07.1326</td>
<td>Self-Adhering Sheet Waterproofing</td>
<td></td>
</tr>
<tr>
<td>07.1800</td>
<td>Traffic Coatings</td>
<td></td>
</tr>
<tr>
<td>07.2100</td>
<td>Thermal Insulation</td>
<td></td>
</tr>
<tr>
<td>07.2500</td>
<td>Weather Barriers</td>
<td></td>
</tr>
<tr>
<td>07.4114</td>
<td>Standing-Seam Metal Roof Panels</td>
<td></td>
</tr>
<tr>
<td>07.2600</td>
<td>Underslab Vapor Retarders</td>
<td></td>
</tr>
<tr>
<td>07.5419</td>
<td>PVC Roofing</td>
<td></td>
</tr>
<tr>
<td>07.6200</td>
<td>Sheet Metal Flashing and Trim</td>
<td></td>
</tr>
<tr>
<td>07.6526</td>
<td>Self-Adhering Sheet Flashing</td>
<td></td>
</tr>
<tr>
<td>07.7233</td>
<td>Roof Hatches</td>
<td></td>
</tr>
<tr>
<td>07.9200</td>
<td>Joint Sealants</td>
<td></td>
</tr>
<tr>
<td>Division 08</td>
<td>Openings</td>
<td></td>
</tr>
<tr>
<td>08.1113</td>
<td>Hollow Metal Doors and Frames</td>
<td></td>
</tr>
<tr>
<td>08.1416</td>
<td>Flush Wood Doors</td>
<td></td>
</tr>
<tr>
<td>08.3515</td>
<td>Panel Folding Doors</td>
<td></td>
</tr>
<tr>
<td>08.4113</td>
<td>Aluminum-Framed Entrances and Storefronts</td>
<td></td>
</tr>
<tr>
<td>08.5313</td>
<td>Composite Windows and Doors</td>
<td></td>
</tr>
<tr>
<td>08.6223</td>
<td>Tubular Skylights</td>
<td></td>
</tr>
<tr>
<td>08.7100</td>
<td>Door Hardware</td>
<td></td>
</tr>
<tr>
<td>08.8000</td>
<td>Glazing</td>
<td></td>
</tr>
<tr>
<td>08.8300</td>
<td>Mirrors</td>
<td></td>
</tr>
<tr>
<td>Division 09</td>
<td>Finishes</td>
<td></td>
</tr>
<tr>
<td>09.2216</td>
<td>Non-Structural Metal Framing</td>
<td></td>
</tr>
<tr>
<td>09.2423</td>
<td>Cement Stucco</td>
<td></td>
</tr>
<tr>
<td>09.2900</td>
<td>Gypsum Board</td>
<td></td>
</tr>
<tr>
<td>09.3013</td>
<td>Ceramic Tiling</td>
<td></td>
</tr>
<tr>
<td>09.5113</td>
<td>Acoustical Panel Ceilings</td>
<td></td>
</tr>
<tr>
<td>09.6513</td>
<td>Resilient Base and Accessories</td>
<td></td>
</tr>
<tr>
<td>09.6566</td>
<td>Resilient Athletic Flooring</td>
<td></td>
</tr>
<tr>
<td>09.6723</td>
<td>Resinous Flooring</td>
<td></td>
</tr>
<tr>
<td>09.6813</td>
<td>Tile Carpeting</td>
<td></td>
</tr>
<tr>
<td>09.6816</td>
<td>Sheet Carpeting</td>
<td></td>
</tr>
<tr>
<td>09.9000</td>
<td>Painting and Coating</td>
<td></td>
</tr>
<tr>
<td>09.9300</td>
<td>Transparent Wood Finishing</td>
<td></td>
</tr>
<tr>
<td>Division 10</td>
<td>Specialties</td>
<td></td>
</tr>
<tr>
<td>10.1416</td>
<td>Plaques</td>
<td></td>
</tr>
<tr>
<td>10.1419</td>
<td>Dimensional Character Signage</td>
<td></td>
</tr>
<tr>
<td>10.1423</td>
<td>Panel Signage</td>
<td></td>
</tr>
</tbody>
</table>
Division 10
10 1424 Decal Warning Signage
10 2615 Wall and Corner Guards
10 2813 Toilet Accessories
10 4413 Fire Protection Cabinets
10 4416 Fire Extinguishers
10 7516 Ground-Set Flagpoles

Division 11
11 0513 Common Motor Requirements for Equipment
11 3013 Residential Appliances
11 8129 Facility Fall Protection

Division 12
12 1000 Public Art Requirements
12 2413 Roller Window Shades
12 9313 Bicycle Racks

Division 13
13 8500 Seismic Protection

Division 14
Conveying Equipment
(Not Used)

VOLUME 2

FACILITY SERVICES SUBGROUP

Division 21
Fire Suppression
21 0500 Common Work Requirements for Fire Suppression
21 0503 Trenching and Backfill for Fire Suppression
21 0504 Pipe and Pipe Fittings for Fire Suppression
21 0505 Piping Specialties for Fire Suppression
21 0523 Valves for Fire Suppression
21 0548 Vibration and Seismic Controls for Fire Protection
21 0549 Fire Suppression and Electrical Installation Coordination
21 1313 Fire Protection System, Automatic Wet-Pipe Sprinkler

Division 22
Plumbing
22 0500 Common Work Requirements for Plumbing
22 0502 Installation of Owner-Supplied Equipment for Plumbing
22 0503 Trenching and Backfill for Plumbing
22 0504 Pipe and Pipe Fittings for Plumbing
22 0505 Piping Specialties for Plumbing
22 0523 Valves for Plumbing
22 0549 Plumbing and Electrical Installation Coordination
22 0700 Plumbing Insulation
22 1100 Domestic Water Piping
22 1123 Facility Natural Gas System
22 1316 Sanitary Waste and Vent Piping
22 1400 Facility Roof and Area Drainage
22 1500 Compressed-Air Systems
22 4000 Plumbing Fixtures and Trim
22 6801 Outside Utilities, Plumbing
Division 23 HVAC
23 0500 Common Work Requirements for HVAC
23 0503 Trenching and Backfilling
23 0504 Pipe and Pipe Fittings
23 0505 Piping Specialties
23 0523 Valves
23 0548 Vibration and Seismic Controls for HVAC
23 0549 HVAC and Electrical Installation Coordination
23 0593 Testing, Adjusting and Balancing of Mechanical Systems
23 0700 Mechanical Systems Insulation
23 0900 Automatic Temperature Controls
23 2313 Refrigerant Piping System and Equipment
23 3000 Air Tempering System and Equipment
23 7413 Packaged Outdoor Central Station Air Handling Units

Division 25 Integrated Automation
(Not used)

Division 26 Electrical
26 0500 Common Work Requirements
26 0519 Low Voltage Electrical Power Conductors and Cables
26 0526 Grounding and Bonding for Electrical Systems
26 0529 Hangers and Supports for Electrical Systems
26 0533 Raceway and Boxes for Electrical Systems
26 0553 Identification for Electrical Systems
26 0923 Digital Occupancy & Daylight Management Control System
26 2416 Panelboards
26 2726 Wiring Devices
26 2813 Fuses
26 2816 Enclosed Switches and Circuit Breakers
26 3213 Engine Generators
26 3600 Transfer Switches
26 4313 Surge Protection Devices for Low Voltage Electrical Power Circuits
26 5100 Interior Lighting

Division 27 Communications
(Not used)

Division 28 Electronic Safety and Security
28 3100 Fire Alarm & Detection

SITE AND INFRASTRUCTURE SUBGROUP
Division 30 (Reserved)

Division 31 Earthwork
31 0000 Site Work
31 2311 Earthwork for Building Construction

Division 32 Exterior Improvements
32 2945 Native Grass Seeding
32 8400 Irrigation
32 9113 Soil Preparation
32 9400 Planting
Division 33 Utilities
(Included in 31 000)

END OF TABLE OF CONTENTS
SECTION 210500 - COMMON WORK REQUIREMENTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. See General Conditions and Supplemental General Conditions.

B. The requirements listed under General Conditions and Supplemental General Conditions and the General Requirements are applicable to this section and all subsequent sections of Division 21 and form a part of the contract.

C. Division 22 for Plumbing Systems.

D. Division 23 for Heating, Ventilating and Air Conditioning (HVAC) Systems.

E. Division 26 for Electrical Systems.

F. Division 28 for Fire Alarm Systems.

G. Division 31, for Trenching, Backfilling and Compaction requirements.

H. Division 33 for requirements of site utility systems, including sanitary sewer, storm sewer, domestic water distribution system, fire main water distribution system, and natural gas service.

I. All electrical work, regardless of voltage which is provided under Division 21 shall comply with the requirements of the National Electric Code (NEC) and Division 26.

1.2 DESIGN INTENT

1.3 FIRE SUPPRESSION DIVISION INDEX

Section 21 0500 Common Work Requirements for Fire Suppression
Section 21 0503 Trenching and Backfilling for Fire Suppression
Section 21 0504 Pipe and Pipe Fittings for Fire Suppression
Section 21 0505 Piping Specialties for Fire Suppression
Section 21 0523 Valves for Fire Suppression
Section 21 0548 Vibration and Seismic Control for Fire Suppression
Section 21 0549 Fire Suppression and Electrical Installation Coordination
Section 21 1313 Fire Protection System, Automatic Wet Pipe Sprinkler

1.4 CODES AND PERMITS

A. The fire suppression shall be performed in strict accordance with the applicable provisions of the International Building Code, [2015] Edition; the Uniform Plumbing Code, 2015 Edition; the Uniform Mechanical Code, 2015 Edition and the International Fire Code, 2003 Edition as adopted and interpreted by the State of New Mexico, City of Santa Fe, and the National Fire Protection Association (NFPA Regulations), current adopted edition, regarding fire protection, heating and ventilating and air conditioning systems and electrical systems. All materials and labor necessary to comply with rules, regulations and ordinances shall be provided. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern. The Contractor shall hold and save the Architect, Engineer, Owner’s Representative free and harmless from liability of any nature or kind arising from his failure to comply with codes and
ordinances.

B. Permits necessary for performance of the work shall be secured and paid for by the Contractor. All utility connections, extensions, and tap fees shall be paid for by the Contractor, unless otherwise specified herein. See Division 33 for all requirements associated with utility permits and fees, connections and extensions.

C. The following lists some applicable codes and standards that shall be followed.

Applicable county and state mechanical, electrical, gas, plumbing, health and sanitary codes, laws and ordinances

National Electrical Manufacturer’s Association Standards

National Electrical Code

Underwriters Laboratories, Inc. Standards

American National Standards Institute

American Society for Testing Materials Standards

Standards and requirements of local utility companies

National Fire Protection Association Standards

American Society of Mechanical Engineers Boiler and Pressure Vessel Codes

Occupational Safety and Health Act

The American Society of Sanitary Engineering

1.5 RECORD DRAWINGS

A. See Division 1, for requirements associated with Project Record Drawings.

B. The Contractor shall be responsible to maintain a complete and accurate set of marked up blue-line prints showing information on the installed location and arrangement of all mechanical work, and in particular, where changes were made during construction. The Contractor shall be responsible for keeping record drawings accurate and up-to-date throughout the construction period. Record drawings may be reviewed and checked by the Architect, Engineer, Owner’s Representative during the construction and in conjunction with review and approval of monthly pay requests. The Contractor shall include copies of all addenda, RFI’s, bulletins, and change orders neatly taped or attached to record drawing set.

C. After installation and acceptance of direct buried underground piping and service lines in trenches, the Contractor shall take ‘as-built’ measurements, including all depths, prior to commencement of backfilling operations. It will not be sufficient to check off line locations. Definite measurements shall be taken for each service line. The location of buried piping and trench service lines shall be shown on the drawings and dimensioned from fixed points.

1.6 QUALIFICATIONS

A. All mechanics shall be skilled in their respective trade.
B. All welders shall be certified in accordance with the ASME Boiler Test Code, Section IX, latest issue.

1.7 QUALIFICATION PROCEDURES

A. The storage, handling, and transportation of all refrigerants, oils, lubricants, etc. shall be accomplished in strict compliance with all State, local, and Federal Regulations including all requirements set forth by the Environmental Protection Agency (EPA) for the safe handling of regulated refrigerants and materials. The Contractor shall utilize qualified and/or certified personnel and equipment as prescribed by these requirements.

1.8 HAZARDOUS CONDITIONS

A. Protruding metal (bolts, steel angles, etc.) potentially hazardous to maintenance and operation personnel, shall be cut back and/or protected to reduce the risk of injury.

1.9 HAZARD SIGNS

A. Equipment rooms, fan plenums, and similar areas containing moving or rotating parts, or other potentially hazardous environments shall include signs on all doors entering such spaces that shall read similar to the following: "Hazardous Area - Authorized Personnel Only."

B. Confined Spaces: Areas designated by OSHA Standard 1910.146 as a confined space shall be marked with a sign that reads "Confined Space - Entry by authorized personnel only, by permit."

1. "Confined Space" means a space that:

 a. Is large enough and so configured that an employee can bodily enter and perform assigned work; and
 b. Has limited or restricted means for entry or exit (for example, tanks, vessels, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry); and
 c. Is not designed for continuous employee occupancy.

C. The Contractor shall survey the final premises to determine where any such potentially hazardous areas exist. If the Contractor feels that hazards exist which cannot be suitably provided for through the above typical methods, he shall forward in writing his concerns, and request for a decision concerning the referenced hazard, prior to the final inspection of the facilities.

1.10 SUBMITTALS

A. The Contractor shall submit submittal brochures of all equipment, fixtures and materials to be furnished under Division 21, including but not limited to the following:

 1. Piping materials, valves, equipment and installation methods, vibration isolation devices, pipe penetration installation methods and products for fire rated assemblies, [fire pump systems] and all equipment listed on equipment schedules, and in related construction documents.
 2. Materials, certification, shop drawings, and other information as specified in the individual Division 21 Specification Sections within this Specification.

B. Unauthorized Substitutions: If substitute materials, equipment or systems are installed without prior review or are installed in a manner which is not in conformance with the requirement of this Specification and for which the Contractor has not received a written review, removal of all the unauthorized materials and installation of those indicated or specified shall be provided at no change in contract amount.

C. All equipment shall be installed in accordance with the manufacturer’s recommendations. Provide all
accessories and components for optimum operation as recommended by the manufacturer.

D. Expense: All costs for the preparation, correction, delivery, and return of the submittals shall be borne by the Contractor.

E. Submittals and one resubmittal will be reviewed by the Architect/Engineer. If the Contractor fails to provide the required data with his second submittal, he will be charged for the third and subsequent reviews.

F. See Division 1 for additional submission requirements.

G. [The Contractor shall submit a maximum of seven (7) copies of submittal brochures for review. Brochures shall be submitted within thirty (30) days after contract award. One (1) copy of all submittals will be retained by the Engineer. One (1) copy of all submittal data will be retained by the Engineer and one (1) copy will be provided to the Owner's Representative.] The remaining copies will be returned to the Architect. Additional sets of submittals, if required by the Contractor, shall be reproduced by the Contractor from the reviewed and marked sets returned to the Contractor.

H. Complete data must be furnished showing performance, quality and dimensions. No equipment or materials shall be purchased prior to receiving written notification that submittals have been reviewed and marked either "NO EXCEPTIONS TAKEN" or "EXCEPTIONS AS NOTED." Submittals returned marked "EXCEPTIONS AS NOTED" do not require resubmittal provided that the Contractor agrees to comply with all exceptions noted in the submittal, and so states in a letter.

I. Review of Submittals: Submittals will be reviewed with reasonable promptness, but only for conformance with the design concept of the Project and for conformance with the information indicated on the Drawings and stated in the Specifications. Review of a separate item as such will not indicate review of the assembly in which the item functions. Review of submittals shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents, nor for errors or omissions in the submittals; or for the accuracy of dimensions and quantities, the adequacy of connections, and the proper and acceptable fitting, execution, functioning and completion of the work. Review shall not relieve the Contractor of responsibility for the equipment fitting within the allotted space shown on the drawings with all clearances required for equipment operation, service and maintenance including minimum clearances required by applicable codes, manufacturer's installation instructions and as necessary for proper clearance in front of all electrical panels as defined by the National Electric Code (NEC). Any relocation of mechanical and/or electrical equipment, materials and systems required to comply with minimum clearances shall be provided by the Contractor without additional cost under the Contract.

J. Shop drawings will be returned unchecked unless the following information is included: cover sheet shall be provided for each submittal of equipment, products and material proposed for use on the project. A common cover sheet for similar equipment (example: all air handling units or all fire protection products) is acceptable. The cover sheet shall list equipment by symbol number; reference all pertinent data in the Specifications or on the drawings; provide size and characteristics of the equipment, name of the project and a space large enough to accept a review stamp. The data submitted shall reflect the actual equipment performance under the specified conditions and shall not be a copy of the scheduled data on the drawings. Cover sheet shall clearly identify any deviations from the specifications for submitted equipment, products, and materials.

K. Use of substitutions reviewed and checked by the Engineer does not relieve the Contractor from compliance with the Contract Documents. Contractor shall bear all extra expense resulting from the use of any substitutions where substitutions affect adjoining or related work required in this Division or other Divisions of this Specification.

L. If Contractor substitutes equipment for that drawn to scale on the drawings, he shall prepare a $1/4" = 1'-0" installation drawing for each equipment room where a substitution is made, using dimensions of
substituted equipment, and including piping, and electrical equipment requirements, to verify that
equipment will fit space with adequate clearances for maintenance. This 1/4" = 1'-0" fabrication
drawing shall be submitted for review with the shop drawing submittals of the substitution. Failure to
comply with this requirement will result in the shop drawings being returned unchecked.

1.11 COORDINATION DRAWINGS

A. The Contractor shall, in advance of the work, prepare coordination drawings for:

1. Mechanical equipment rooms.
2. Piping and piping chases.
3. Complete fire suppression system piping and sprinkler head layout.
4. Layout of all fire suppression equipment.

B. Show the location of piping openings through the building floors, walls and roofs coordinated with
Architectural and Structural, as well as the location and elevations of building fire suppression
equipment and systems and piping, coordinated with plumbing, HVAC and electrical systems.
Coordination drawings, including plans, elevations and sections, as appropriate, shall clearly show the
manner in which the fire suppression systems fit into the available space and coordinates with HVAC
and plumbing equipment, ductwork, piping, and electrical equipment, including conduits, light fixtures,
motor control centers, transformers, panels, variable frequency drives, etc. Drawings shall demonstrate
required code clearances for mechanical and electrical equipments, control panels, etc., and proper
operation, maintenance and replacement of fire suppression devices and equipment. Coordination
drawings shall be of appropriate scale to satisfy the previously stated purposes, but not smaller than 1/8
inch scale for floor plans and 1/4 scale of equipment rooms and chase areas. Drawings may be
composite or may be separate but fully coordinated drawings of the same scale. Every subcontractor
must sign-off on coordination drawings prepared by each craft. Failure to sign-off will indicate that
subcontractor is proceeding at his own risk. Any cost required to relocate systems to comply with
required clearance and equipment installation requirements shall be provided by the Contractor
without additional cost under the contract.

C. Seven (7) complete sets of coordination drawings shall be submitted prior to the scheduled start of the
work in the area illustrated by the drawings, for the purpose of showing the Contractor’s planned
method of installation. The objectives of such drawings are to promote carefully planned work
sequence and proper coordination, in order to assure the expeditious solutions of problems, and the
installation of lines and equipment as contemplated by the contract documents while avoiding or
minimizing additional costs to the Contractor and to the Owner.

D. In the event the Contractor, in coordinating the various installations and in planning the method of
installation, finds a conflict in location or elevation of any of the mechanical systems, with the structural
items or with other construction items, such conflicts shall immediately be documented and submitted
for clarification. In doing so, the Contractor shall explain the proposed method of solving the problem,
or shall request instructions as to how to proceed if adjustments beyond those of usual trades
coordination are necessary.

E. Installation of fire suppression work shall not proceed prior to the submission and completion of the
review of the coordination drawings, and any conflicts which are disclosed by the coordination
drawings. It is the responsibility of the Contractor to submit the required drawings in a timely manner
consistent with the requirements for completing the work covered by this contract within the prescribed
contract time.

1.12 USE OF CADD FILES

A. Under certain conditions, the Contractor will be permitted the use of the Engineer’s CADD files for
documentation of as-builts, submittals, or coordination drawings.
B. The Engineer may require compensation for the time necessary to format the CADD files delivery to the Contractor. Such work will include removal of title blocks, professional for seals, calculations, proprietary information, etc.

C. The Contractor shall complete the enclosed License, Indemnity and Warranty Agreement, complete with contractor's name, address, and Contractor's Representative signature prior to request for CADD file usage.

1.13 PRIOR APPROVAL

A. Prior approval (approval prior to bid) of alternate mechanical equipment suppliers and service providers is not required. Please do not request prior approval. Alternate manufacturers and service providers may be submitted after bid in accordance with the submittal process provided they meet or exceed the specifications and the indicated design intent.

B. Equipment manufacturers and service providers are listed within the specifications for the work specified in this division. For the items listed below, the specified manufacturers and providers are the only ones presently approved, and may be the only ones allowed:

1. Plumbing Fixtures and Trim

C. Manufacturers and service providers who are not listed in these specs, and who offer equivalent or superior products or services, are invited to submit for approval prior to bid (prior approval). Submit two copies. Requests for prior approval must:

1. Include the substitution request form at the end of this spec section.
2. Include technical data sufficient for the Engineer to generally assess appropriateness for this project.
3. Be submitted minimum ten days prior to the bid date in effect at the time of submission.
4. Comply with any additional requirements per specification Division 1.

D. Any additional prior approved alternate manufacturers and service providers will be published in an addendum prior to bid. Prior approval indicates that based on the information submitted it appears to the Engineer that the alternate might be capable of meeting the specifications and the design intent, and might be appropriate for the project. But prior approval does not guarantee this. Prior approved products and service providers must still go through the submittal process after award, and must still comply with the design intent and all specification requirements.

E. Please do not request prior approval for products and service providers that are not listed above. Instead, for those items alternate manufacturers and alternate service providers may be submitted after bid in accordance with the submittal process, provided they meet or exceed the specifications and the indicated design intent.

1.14 GUARANTEE-WARRANTY

A. See Division 1 for warranties.

B. The following guarantee is a part of the specifications and shall be binding on the Contractor:

"The Contractor guarantees that this installation is free from mechanical defects. He agrees to replace or repair any part of the installation which may fail within a period of one year after date established below, provided that such failure is due to defects in the materials or workmanship or to failure to follow the specifications and drawings. Warranty of the Contractor-furnished equipment or systems shall begin on the date the system or equipment is placed in operation for
beneficial use of the Owner or occupancy by the Owner, whichever occurs first; such date will be determined in writing, by means of issuing a 'Certificate of Substantial Completion', AIA Form G704," or equivalent.

C. The extent of guarantees or warranties by Equipment and/or Materials Manufacturers shall not diminish the requirements of the Contractor's guarantee-warranty to the Owner.

PART 2 - PRODUCTS

2.1 QUALITY OF MATERIALS

A. All equipment and materials shall be new, and shall be the standard product of manufacturers regularly engaged in the production of fire suppression equipment and shall be the manufacturer's latest design. Specific equipment, shown in schedules on drawings and specified herein, is to set forth a standard of quality and operation.

B. Hazardous or Environmentally Damaging Materials: Products shall not contain asbestos, mercury, PCBs, or other materials harmful to people or the environment.

2.2 ELECTRICAL WIRING AND CONTROL EQUIPMENT

A. All wiring and conduit shall be furnished and installed as scheduled in Section 21 0549, Fire Suppression and Electrical Installation Coordination, unless otherwise noted or directed.

B. The Contractor shall coordinate completely with all trades and Sub-Contractors as required to ensure that all necessary components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

C. The fire suppression piping system may be bonded to the electrical ground bus at the electrical service equipment, but shall not under any circumstances be used as the main grounding electrode for the electrical service.

2.3 PAINTING

A. All finish painting of fire suppression systems and equipment will be under "Painting," unless equipment is hereinafter specified to be provided with factory applied finish coats.

B. All equipment shall be provided with factory applied prime finish, unless otherwise specified.

C. Touch-Up: If the factory finish on any equipment is damaged in shipment or during construction of the building, the equipment shall be refinished.

2.4 IDENTIFICATION OF VALVES

A. Each valve shall be provided with a stamped metal tag secured to the valve. Tag shall indicate the valve number, the service and function of each valve. The Contractor shall provide a valve chart, typed neatly on 8-1/2" x 11" sheets, listing the number, size, location, function, normal operating position, on each valve installed under Division 21. Tags shall be stamped brass 1-1/2" diameter, and secured to valves by heavy copper figure eight hooks, braided stainless steel wire anchor, or other approved means.

B. Division 21 valve tags shall be coordinated with Division 22 and Division 23 valve tags for coordinated format between each division.
2.5 PIPING SYSTEM IDENTIFICATION

A. Means of Identification: All piping shall be identified by each of the means described below. The Contractor shall provide shop drawing submittal data for proposed labeling system materials and manufacturer’s recommended installation procedures.

B. Piping Systems shall be identified by means of an identifying legend on color coded background appropriately worded to indicate the "service" name of the pipe as shown on the drawings. Color coded banding shall also be provided. Additionally, an arrow shall be included to indicate the direction of flow through the pipe.

C. Locations of Piping System Identification: The identifying legends and directional arrows described in the paragraphs preceding shall be located at the following points on each piping system:

- Adjacent to each valve in piping system.
- At every point of entry and exit where piping passes through a wall.
- On each pipe riser and junction.
- At a maximum interval of 20 feet on pipe lines exposed and concealed above accessible ceilings.
- Adjacent to all special fittings (regulating valves, etc.) in piping systems.
- At every access door.

D. Piping identification shall meet the standards of the Federal Occupational Safety Health Act (OSHA) which refers to the ANSI Standard A13.1. The following standardized color code scheme shall be used:

- Yellow - Hazardous Materials
- Green - Liquid Materials of Inherently Low Hazard
- Blue - Gaseous Materials of Inherently Low Hazard
- Red - Fire Protection Materials

E. The size of letter and length of color field shall conform to the ANSI standard and shall be as follows:

<table>
<thead>
<tr>
<th>Outside Diameter of Pipe or Covering</th>
<th>Length of Color Field</th>
<th>Size of Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>----- to 1-1/4"</td>
<td>8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>1-1/2" to 2"</td>
<td>8"</td>
<td>3/4"</td>
</tr>
<tr>
<td>2-1/2" to 6"</td>
<td>12"</td>
<td>1-1/4"</td>
</tr>
<tr>
<td>8" to 10"</td>
<td>24"</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>Over 10"</td>
<td>32"</td>
<td>3-1/2"</td>
</tr>
</tbody>
</table>

F. All pipe labels [exposed within mechanical equipment spaces] shall be semi-rigid plastic identification markers. Each label shall have appropriately color-coded background with printed legend. Directional flow arrows shall be included on label. Labels shall "snap-on" around pipe without the requirement for adhesive or bonding of piping sizes 3/4" through 5". Labels for piping 6" and larger shall be furnished with spring attachment at each end of label. Labels shall be "SETMARK" Type SNA, 3/4" through 5" size and Type STR, 6" and larger, as manufactured by Seton Name Plate Corporation, Brady, or equivalent.

G. All pipe labels except pipe labels located exposed within the mechanical equipment spaces shall be vinyl material with permanent adhesive for application to clear dry pipe and/or insulation jacketing. Each label shall have appropriate color-coded background with printed legend. Direction arrows shall be placed next to label to indicate flow direction. Color and size of arrows shall correspond to that of label. Pressure sensitive pipe tape matching the background color of the label shall be placed over each end of the label and completely around the pipe.
H. Attach pipe markers to lower quarter of the pipe on horizontal runs and on the centerline of vertical piping where view is not obstructed. Flow indicator arrow shall point away from pipe marker.

I. Provide the following labels, with ANSI/OSHA color for all piping systems as shown on the drawings and as listed below:

<table>
<thead>
<tr>
<th>Service/Legend</th>
<th>Letter Color</th>
<th>Background Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Protection Water</td>
<td>White</td>
<td>Red</td>
</tr>
<tr>
<td>Fire Auto Sprinkler</td>
<td>White</td>
<td>Red</td>
</tr>
<tr>
<td>Fire Dry Standpipe</td>
<td>White</td>
<td>Red</td>
</tr>
<tr>
<td>Fire Wet Standpipe</td>
<td>White</td>
<td>Red</td>
</tr>
<tr>
<td>Fire Combination Standpipe</td>
<td>White</td>
<td>Red</td>
</tr>
</tbody>
</table>

2.6 IDENTIFICATION OF CONTROL SYSTEM DEVICES

A. All automatic controls, control panels, pressure electric, electric pressure switches, relays and starters shall be clearly tagged and identified.

2.7 UNDERGROUND PIPING SYSTEM IDENTIFICATION

A. Bury a continuous, preprinted, bright colored, plastic ribbon cable marker with each underground pipe regardless of whether encased. Locate directly over buried pipe, 6" to 8" below finished grade. Marker tape used in conjunction with buried plastic piping systems shall be special detector type. Marker tape used in conjunction with buried piping systems shall be special detection type.

2.8 ACCESS DOORS

A. Provide all access doors required for access to valves, controls, or other items for which access is required for either operation or servicing. All costs incurred through failure to perform this function as the proper sequence of this work shall be borne by the Contractor. The type of access door shall be as required by the room finish schedule. Acoustical tile access doors shall be equal to Krueger Style B, Style A for acoustical plaster, Style C-CE for sidewall drywall or plaster construction, or Milcor institutional 10 gauge security/detention access door with welded joints, welded butt hinge, with detention type deadbolt lock and tamperproof screws.

B. Access doors shall be not less than 24" x 24" in size except that larger panels shall be furnished where required, and panels in tile or other similar patterned ceilings shall have dimensions corresponding to the tile or pattern module.

C. Where access doors are installed in walls required to have a specific fire rating, the access door installed shall be a fire rated access door with UL label, as manufactured by Milcor or equivalent. Access door in 1-hour construction shall be Class C and access doors in 2-hour construction shall be Class B.

PART 3 - EXECUTION

3.1 COOPERATION WITH OTHER TRADES

A. The Contractor shall refer to other parts of these specifications covering the work of other trades which must be carried on in conjunction with the mechanical work so that the construction operations can proceed without harm to the Owner from interference, delay, or absence of coordination. The Contractor shall be responsible for the size and accuracy of all openings.
3.2 DESIGN AND DRAWINGS

A. The complete design for the project fire suppression system including drawings, hydraulic calculations, piping sizing and arrangement, head layouts, equipment selection, etc., shall be the responsibility of Division 21 Contractor. Preparation of the fire suppression system design shall be in accordance with all Division 21 specification requirements, NFPA requirements and Authorities Having Jurisdiction.

B. The fire suppression drawings show the general arrangement of piping, equipment, etc., and shall be followed as closely as actual building construction and work of other trades will permit. Whenever discrepancies occur between plans and specifications, the most stringent shall govern. All Contract Documents, including but not limited to Division 22 Plumbing, Division 23 Heating Ventilating and Air Conditioning and Division 26 electrical shall be considered as part of the work insofar as this information furnishes the Contractor with details relating to design and construction of the building. Architectural and structural drawings shall take precedence over the fire suppression, plumbing, HVAC and electrical drawings. Because of the small scale of the fire suppression drawings, it is not possible to indicate all offsets, fittings and accessories which may be required. The Contractor shall investigate the structural and finish conditions affecting the work and shall arrange his work accordingly, providing such fittings, valves, and accessories as may be required to meet such conditions. Should conditions necessitate a rearrangement of piping, such departures and the reasons therefore shall be submitted by the Contractor for review in the form of detailed drawings showing the proposed changes. No such changes shall be made without the prior written approval. All changes shall be marked on the set of record drawings by the Contractor.

C. Should any doubt or question arise in respect to the true meaning of the drawings or specifications, the question shall be submitted in writing.

D. Installation of all fire suppression equipment and piping systems shall be arranged to provide all clearances required for equipment operation, service, and maintenance, including minimum clearances required by applicable codes, manufacturer’s installation instructions and as necessary for proper clearance in front of all electrical panels as defined by the National Electric Code (NEC). Piping systems shall not be routed through or above electrical equipment room or electrical equipment space designed within mechanical equipment rooms.

E. The Contractor’s attention is directed to the unique architectural design features and consideration associated with this facility which will require significantly greater levels of coordination and cooperation for the work furnished and installed under Division 21 with the associated architectural, structural, and electrical work than is normally necessary for a more typical facility.

F. The installation of all concealed fire suppression systems shall be carefully arranged to fit within the available space without interference with adjacent mechanical, plumbing, structural and electrical systems. The Contractor shall make all necessary provisions for penetrations of piping, including sleeves and blockouts in structural systems. The exact location of all exposed fire suppression systems, including access doors; sprinkler piping exposed within finished areas; and other equipment and devices as applicable, shall be coordinated with the Architect, who shall have final authority for the acceptance of the work as it specifically relates to the architectural aesthetic design requirements for the facility. In no instance shall the building vapor barrier system be penetrated by the fire suppression system installation without written approval.

3.3 FIELD MEASUREMENTS

A. The Contractor shall verify the dimensions and conditions governing his work at the building. No extra compensation shall be claimed or allowed on account of differences between actual dimensions, including dimensions of equipment, fixtures and materials furnished, and those indicated on the drawings. Contractor shall examine adjoining work, on which his work is dependent for perfect efficiency, and shall report any work which must be corrected. Coordination of all fire suppression work
within the building will be the direct responsibility of the Contractor. Review of submittal data in accordance with paragraph "Submittals" shall in no manner relieve the Contractor of responsibility for the proper installation of the fire suppression work within the available space. Installation of equipment and systems within the building space shall be carefully coordinated by the Division 21 Contractor with all building trades. Each contractor shall so harmonize his work with that of the several other trades that it may be installed in the most direct and workmanlike manner without hindering or handicapping the other trades. Piping interferences shall be handled by giving precedence to pipe lines which require a stated grade for proper operation. Sewer lines shall take precedence over water lines in determination of elevations. In all cases, lines requiring a stated grade for their proper operation shall have precedence over electrical conduit and ductwork. Installation of fire suppression, plumbing and HVAC systems within the ceiling cavity shall be in the following order of priority: plumbing waste lines; roof drains; supply, return, outside air, makeup, and exhaust ductwork; steam and condensate piping; fire sprinkler mains; fire sprinkler branch piping and sprinkler runouts; heating hot water and chilled water piping; domestic hot and cold water; control piping, wiring and conduit.

3.4 EQUIPMENT SUPPORT

A. Contractor shall provide support for equipment to the building structure. Contractor shall furnish all necessary structures, inserts, sleeves, and hanging devices for installation of mechanical and plumbing equipment, ductwork and piping, etc. Contractor shall completely coordinate installation of such devices with all trades and Sub-Contractors. Contractor must further verify that the devices and supports are adequate as intended and do not overload the building’s structural components in any way.

3.5 SEISMIC SUPPORTS

A. The Contractor shall be responsible for all anchors and connections for the mechanical work to the building structure to prevent damage of equipment and systems due to earthquakes. The complete fire protection systems shall be supported as required to resist stresses produced by lateral forces as required by NFPA No. 13. Where fire suppression equipment and piping is connected to the building structure, exact method and means of attachment to the structural system shall be approved by the Architect, Engineer, Owner’s Representative.

B. See Section 21 0548 for additional requirements for seismic supporting of fire suppression equipment and systems.

3.6 PROTECTION OF MATERIALS AND EQUIPMENT

A. The Contractor shall be responsible for the protection of all work, materials and equipment furnished and installed under this section of the specifications, whether incorporated in the building or not.

B. All items of fire suppression equipment and materials, including piping, valves and fittings, etc., shall be protected from damage and contamination. Equipment and materials shall not be stored outside and exposed to weather and ambient conditions without appropriate protection measures and without the approval of the Owner’s Representative. Equipment shall be delivered to the jobsite and maintained while on the jobsite with all openings, controls and control panels covered with heavy duty polyethylene wrap or other proper means. Equipment and materials where stored within the building shall be protected at all times from construction damage and contamination from dust, dirt, debris, and especially during fireproofing, painting and gyp board sanding and finishing. Unprotected equipment and piping will require special field cleaning by the Contractor prior to acceptance by the Architect and Owner’s Representative.

C. The Contractor shall provide protection for all work where necessary and shall be responsible for all damage done to property, equipment and materials. Storage of materials within the building shall be approved by the Architect, Engineer, Owner’s Representative prior to such storage.
Pipe openings shall be closed with caps or plugs, or covered to prevent lodgment of dirt or trash during the course of installation. At the completion of the work, fire suppression equipment and materials shall be cleaned thoroughly and delivered in a condition satisfactory to the Architect, Engineer, Owner’s Representative.

3.7 TRENCHING AND BACKFILLING

A. All excavation, trenching and backfilling required for the fire suppression installation shall be provided by this Contractor.

3.8 MANUFACTURER’S INSTRUCTIONS

A. All equipment shall be installed in strict accordance with recommendations of the manufacturer. If such recommendations conflict with plans and specifications, the Contractor shall report such conflicts to the Architect, Engineer, Owner’s Representative who shall make such compromises as he deems necessary and desirable.

3.9 PRE-PURCHASED

A. Some equipment has either been pre-purchased or is in the process of being pre-purchased by the Owner. It has been necessary to take this approach in order to meet the construction deadlines of the project. The pre-purchased equipment will be indicated on the drawings and specifications.

B. The Contractors shall be responsible for the following in regards to the prepurchased and Owner furnished equipment.

1. Coordinate with Owner’s Representative in order to follow and expedite the delivery of each piece of equipment to assure the equipment delivery stays on schedule. Let the Owner know of any problems or delays.
2. Receive, unload, uncrate, and install each item of prepurchased and Owner furnished equipment.
3. Confirm that each item has been received complete and as specified. Notify the Owner and the manufacturer’s representative in writing of any deficiencies or damage.
4. Coordinate with the manufacturer’s representative on start-up and provide factory personnel to assist Contractors’ start-up personnel as required.
5. Any items that are not listed as pre-purchased shall be provided by the Contractor as part of his work.

C. The Contractor shall not be responsible for the following in regards to pre-purchased and Owner furnished equipment:

1. Payment
2. Equipment Warranty
3. Submittals
4. Operating and Maintenance Manuals
5. Equipment Performance

D. Submittals, installation instructions, and warranty provisions for prepurchased equipment will be furnished to the Contractor by the Owner.

3.10 TESTS

A. Tests shall be conducted in the presence of the designated and authorized Owner’s Representative. The Contractor shall notify the Architect, Engineer, Owner’s Representative a minimum of one week in advance.
advance of scheduled tests. Requirements for testing are specified under the sections covering the various systems. The Contractor shall furnish all necessary equipment, materials, and labor to perform the required tests.

3.11 INSTALLATION CHECK

A. An experienced, competent, and authorized representative of the equipment listed below shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier’s representative shall be present when the equipment is placed in operation. The equipment supplier’s representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is approved and accepted.

B. Each equipment supplier’s representative shall furnish a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it has operated satisfactorily.

3.12 OPERATION AND MAINTENANCE INSTRUCTIONS

A. The Contractor shall furnish complete operating and maintenance instructions covering all units of fire suppression equipment herein specified together with parts lists. Equipment spare parts shall include all components requiring service, including motors, bearings, shafts, etc. Furnish two (2) copies of all the literature; each shall be suitably bound in loose leaf book form.

B. See Division 1 for additional requirements concerning manuals, manual distribution, and maintenance materials.

C. Operating and maintenance manuals as required herein shall be submitted for review and distribution to the Owner not less than two (2) weeks prior to the date scheduled for the Contractor to provide Operating and Maintenance Instructions to the Owner as specified herein.

D. Upon completion of all work and all tests, the Contractor shall instruct the Owner or his representative fully in the operations, adjustment and maintenance of all equipment furnished. Contractor shall provide at least two weeks notice in advance of this period, with a written schedule of each training session, the subject of the session, the Contractors’ representatives who plan to attend the session, and the time for each session.

E. Equipment startup and operational test shall be conducted by the Contractor with the assistance of the representatives from the fire pump manufacturers and fire pump controller manufacturer. Test shall be conducted in the presence of the designated and authorized Owner’s Representative.

3.13 CERTIFICATIONS

A. Before receiving final payment, the Contractor shall certify in writing that all equipment furnished and all work done is in compliance with the contract documents and all applicable codes. Submit certifications and acceptance certificates, including proof of delivery of O&M manuals, spare parts required, and equipment warranties which shall be bound with O&M manuals.

3.14 CONSTRUCTION PHASING AND SCHEDULE

A. All work furnished and installed under Division 21 of this Specification shall be provided in accordance with the project schedule and phase and schedule requirements as described on the Architectural Drawings and Specifications.
3.15 SITE VISITS AND OBSERVATION OF CONSTRUCTION

A. The design professional shall make periodic visits to the project site at various stages of construction in order to observe the progress and quality of various aspects of the Contractor's work, in order to determine in general if such work is proceeding in accordance with the Contract Documents. This observation, however, shall in no way release the Contractor from his complete responsibility to supervise, direct, and control all construction work and activities. The design team has no authority over, or a responsibility to means, methods, techniques, sequences, or procedures of construction provided by the Contractor or for safety precautions and programs, or for failure by the Contractor to comply with all law, regulations, and codes.

END OF SECTION
DIVISION 21 SUBSTITUTION REQUEST FORM (SRF)

TO: BRIDGERS & PAXTON CONSULTING ENGINEERS, INC.
PROJECT:

We hereby submit for your consideration the following product instead of the specified item for the above project:
Section: Page: Paragraph/Line: Specified Item: Proposed Substitution:

Attach complete product description, drawings, photographs, performance and test data, and other information necessary for evaluation. Identify specific Model Numbers, finishes, options, etc.

1. Will changes be required to building design in order to properly install proposed substitutions? YES ☐ NO ☐
 If YES, explain:__

2. Will the undersigned pay for changes to the building design, including engineering and drawing costs, caused by requested substitutions? YES ☐ NO ☐

3. List differences between proposed substitutions and specified item.
 Specified Item Proposed Substitution
 __
 __
 __

4. Does substitution affect Drawing dimensions? YES ☐ NO ☐

5. What affect does substitution have on other trades? __

6. Does the manufacturer’s warranty for proposed substitution differ from that specified? YES ☐ NO ☐
 If YES, explain:__

7. Will substitution affect progress schedule? YES ☐ NO ☐
 If YES, explain:__

8. Will maintenance and service parts be locally available for substitution? YES ☐ NO ☐
 If YES, explain:__

9. Does proposed product contain asbestos in any form? YES ☐ NO ☐

SUBMITTED BY: Firm: ___________________________ Date: ___________________________
Address: ___
Signature: ___________________________ Telephone: ___________________________

For Engineer’s Use Only
Accepted: ___________________________ Not Accepted: ___________________________ Received too Late: ___________________________
By: ___________________________ Date: ___________________________
Remarks: ___________________________
LICENSE AGREEMENT FOR CADD DATABASE OR BIM MODEL

PROJECT: ___

LICENSE GRANT: Contractor is granted use of the CADD Database or BIM Model (Database/Model) for the indicated project for the specific purpose of preparing submittal documents for this Project. No other use of the Database/Model is granted. Title to the Database/Model is not transferred to the Contractor. The Database/Model may be of value to the Contractor in preparing submittals, but use of the model does not relieve the contractor of the requirement to verify measurements in the field.

COPYING RESTRICTIONS: Contractor may copy the Database/Model in whole or in part, but only for backup and archival purposes or for use by the Contractor’s Subcontractors. Contractor agrees to ensure that any entities that receive the Database/Model from Contractor, either in whole or in part, comply with the terms and conditions of this agreement. Contractor shall safeguard the Database/Model from falling into the hands of parties other than Subcontractors with a legitimate need for it.

WARRANTY: Bridgers & Paxton (B&P) offers this Database/Model without warranty and specifically without express or implied warranty of fitness. If Contractor chooses to use the Database/Model, then he does so at his own risk and without any liability or risk to B&P.

INDEMNITY: Contractor shall to the fullest extent permitted by law, defend, indemnify and hold harmless the Owner, Architect, B&P, their employees and agents from all claims, damages, losses, and attorney fees arising out of or resulting from the use of the Database/Model.

ACKNOWLEDGMENT: Contractor acknowledges that (s)he has read this Agreement, understands it, and agrees to be bound by its terms and conditions.

CONTRACTOR'S REPRESENTATIVE

Signature: __ Company Name: ____________________________

Name: ___ Address 1: ___

Title: __ Address 2: ________________________________

Date: ___
SECTION 210503 - TRENCHING AND BACKFILLING FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and the General Requirements.

1.2 SCOPE OF WORK

A. The work in this section includes the furnishing of all labor, materials, equipment, transportation, hauling and services required in connection with the excavation, backfilling, compaction, grading and removal of earth from the site required for the installation of the mechanical work specified herein under Division 21.

B. The Contractor shall provide the services of a qualified underground locator to field locate and mark all existing buried utility lines, public and private, piping, conduits, etc., within the required construction area prior to the start of any trenching or excavation work.

1.3 SAFETY REGULATIONS

A. All work performed under this Section shall conform to the requirements of the General Conditions, Supplemental General Conditions and Safety Requirements for this type of work.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

See Division 23, Section 23 0503, for applicable requirements.

END OF SECTION
SECTION 210504 - PIPE AND PIPE FITTINGS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Lead Ban: All piping, solder and flux used in the installation of piping systems furnished and installed under Division 21, shall be lead free. The term lead free is defined as pipe which does not contain more than 8.0% lead and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 21 0500 for Common Work Requirements for Fire Suppression.

1.3 SUBMITTAL DATA

A. Contractor shall furnish complete submittal data for all piping materials, including manufacturer's specifications, certifications, class, type and schedule. Submittal data shall additionally be furnished for pipe hangers and supports, seismic restraints, pipe sleeves including sealing and fire safing materials and installation.

PART 2 - PRODUCTS

See Division 21, Section 21 1313 for applicable requirements.

PART 3 - EXECUTION

See Division 21, Section 21 1313 for applicable requirements.

END OF SECTION
SECTION 210505 - PIPING SPECIALTIES FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Contractor shall furnish and install all piping specialties necessary for satisfactory operation of the systems. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 RELATED SECTIONS

A. Section 21 0500, Common Work Requirements for Fire Suppression.

B. Section 21 0504, Pipe and Pipe Fittings for Fire Suppression.

C. Section 21 0523, Valves for Fire Suppression.

D. Section 21 0549, Fire Suppression and Electrical Installation Coordination.

1.3 SUBMITTAL DATA

A. Contractor shall furnish complete submittal data for all piping specialties including manufacturer's specifications, performance characteristics, ratings, installation instructions, certifications and approvals of listing agencies, wiring diagrams, and selection analysis.

PART 2 - PRODUCTS

See Division 23, Section 23 0505, for applicable requirements.

PART 3 - EXECUTION

See Division 23, Section 23 0505, for applicable requirements.

END OF SECTION
SECTION 210523 - VALVES FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. All Valves shall conform with current applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

B. All Valves shall meet the current MSS Specifications covering Bronze & Iron Valves. MSS-SP-80, MSS-SP-70, MSS-SP71, MSS-SP-85 where applicable.

C. Lead Ban: Valves shall be lead free. The term lead free is defined as valves which do not contain more than 8.0% lead.

1.2 RELATED SECTIONS

A. Section 210500, Common Work Requirements for Fire Suppression.

B. Section 210523, Valve Identification for Fire Suppression.

C. Section 210504, Pipe and Pipe Fittings for Fire Suppression.

D. Division 23 for Valves.

1.3 SCOPE

A. Contractor shall furnish and install all valves and accessories necessary for satisfactory operation of the systems.

1.4 VALVE REQUIREMENTS

A. All Fire Suppression system valves shall be UL Listed and FM Approved. See applicable fire suppression system specification sections for additional valve requirements, including hose threads, tamper switches, etc.

B. All Gate, Globe, Check, Ball valves shall be manufactured by Milwaukee, Nibco, Apollo, Stockham, Powell, Crane, Grinnell, or equivalent.

C. Butterfly valves shall be as manufactured by Milwaukee, W. C. Norris, Centerline, Crane, Demco, Keystone, Grinnell, Victaulic, Nibco, or Dezurik, or equivalent.

PART 2 - PRODUCTS

See Division 21, Section 211313, for applicable requirements.

PART 3 - EXECUTION

See Division 21, Section 211313, for applicable requirements.
END OF SECTION
SECTION 210548 - VIBRATION AND SEISMIC CONTROLS FOR FIRE PROTECTION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with the applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

1.2 RELATED SECTIONS

A. Section 21 0500, Common Works Requirements for Fire Suppression.

B. Section 21 0504, Pipe and Pipe Fittings.

1.3 SCOPE

A. It shall be understood that the requirements for seismic restraints are in addition to other requirements as specified elsewhere for the support and attachment of equipment and mechanical services, and for the vibration isolation of same equipment. Nothing on the project drawings or specifications shall be interpreted as justification to waive the requirements for seismic restraint as specified herein, shown on the drawings and required by Code.

B. The work under this section shall include furnishing all labor, materials, tools, appliances and equipment, and performing all operations necessary for the complete execution of the installation of seismic snubber restraint assemblies as shown, detailed and/or scheduled on the drawings and/or specified in this section of the specifications.

C. The materials and systems specified in this section shall be provided by the Contractor from a single Seismic Snubber Restraint Materials Manufacturer to assure sole source responsibility for the performance of the seismic restraints used.

D. The seismic snubber restraint materials manufacturer shall be responsible for detailed design for seismic supports, including calculation for size and attachment, signed and sealed by registered State of New Mexico Structural Engineer.

1.4 SUBMITTALS

A. See Section 21 0500 for general requirements for submittal materials. In addition to the requirements contained in Section 21 0500, provide submittal information for all products and materials covered under this Section of the Specifications as listed herein.

B. Furnish complete catalog data on all vibration isolators, restraints, and equipment vibration bases to be utilized for the project in order to establish compliance with the plans and specifications and all code requirements.

C. Furnish complete shop drawing information including construction details for all vibration bases; support points and anchor bolt requirements and locations; method of support for piping; method of isolation for piping passing through the building structure; and location and arrangement of seismic restraints.
D. Manufacturers not listed as approved in ‘Part 2 - Products’ must submit for prior approval in accordance with provisions contained in Section 23 0500.

E. Drawings shall be reviewed and certified by a registered Professional Engineer, with a minimum of five (5) years working experience in this field, certifying that the submitted seismic restraint system design and anchorage details complies with all specification requirements and applicable codes.

1.5 CODE REQUIREMENTS

A. Seismic restraints shall be provided for equipment, materials and systems furnished and installed under Division 21 of this Specification in accordance with the requirements of the 2012 International Building Code; and NFPA No. 13 for fire protection system as adopted and interpreted by the State of New Mexico and the City of Santa Fe.

1.6 PROJECT SEISMIC PARAMETERS

A. The following parameters shall are based on Structural Calculations and should be used to evaluate the seismic requirements of the mechanical systems and components. See structural drawings for additional information:

Risk Category	SDS=0.546
Seismic Response Coefficients	SD1=0.167
Site Soil Class	[C]
Seismic Design Category	[D]

Refer to Structural Engineer’s drawing package for exact design parameters.

1.7 SEISMIC RESTRAINT REQUIREMENTS

A. The Contractor shall submit calculations prepared by a State of New Mexico licensed Structural Engineer to substantiate that all items of fire protection equipment and piping systems are properly supported to resist earthquake forces as required herein.

B. All fire protection equipment mounted on vibration isolators shall be provided with seismic restraints securely anchored to the building structure capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements.

C. All items of fire protection equipment required for life safety including the fire pump and fire protection systems shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements.

D. All items of fire protection equipment, except as specified above, and all piping furnished and installed under Division 21 shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 50% of their weight.

E. Seismic restraint/snubber manufacturer shall be responsible for the structural design of attachment hardware as required to attach seismic restraints/snubbers to both the equipment and supporting structure on vibration isolated equipment, or to directly attach equipment to the building structure for non-isolated equipment.

F. The Contractor shall furnish a complete set of approved shop drawings of all mechanical and electrical equipment which is to be restrained to the seismic restraint manufacturer, from which the selection and
The design of seismic restraint devices and/or attachment hardware will be completed. The shop drawings furnished shall include, at a minimum, basic equipment layout, length and width dimensions, installed operating weights of the equipment to be restrained and the distribution of weight at the restraint points.

PART 2 - PRODUCTS

See Division 23, Section 23 0548, for applicable requirements.

PART 3 - EXECUTION

See Division 23, Section 23 0548, for applicable requirements.

END OF SECTION
SECTION 210549 - FIRE SUPPRESSION AND ELECTRICAL INSTALLATION COORDINATION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 RELATED DIVISIONS AND SECTIONS

A. Section 21 0500, Common Work Results for Fire Suppression.
B. Division 22 for Plumbing Systems.
C. Division 23 for Facility Management System.
D. Division 26 for Electrical.
E. Division 28 for Fire Alarm System.

1.3 SCOPE

A. It is the intention of this section to summarize the coordination of effort defined in the related sections and divisions of this specification.
B. If there is a conflict between this Section and other Sections and Divisions of this specification, this Section shall be the governing and decisive Section.
C. Make all connections to motors and controls for equipment supplied and/or installed under Division 21 according to Table 1.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

A. No work shall be performed until the reviewed and marked submittal data have been reissued to the Contractor, unless written permission is obtained from the Architect.
<table>
<thead>
<tr>
<th>Item or System</th>
<th>Note</th>
<th>Supplied By (3)</th>
<th>Installed By (3)</th>
<th>Powered By</th>
<th>Control Field Wiring By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fused and Non-Fused Disconnects</td>
<td>(1)</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Control Relays & Control Transformers</td>
<td>(1)</td>
<td>Div. 21</td>
<td>Div. 21</td>
<td>Div. 26</td>
<td>Div. 21</td>
</tr>
<tr>
<td>Fire Alarm System & Interface w/Fire Suppression Systems</td>
<td></td>
<td>Div. 28</td>
<td>Div. 28</td>
<td>Div. 28</td>
<td>Div. 28</td>
</tr>
<tr>
<td>Fire Pump Systems, including main pump & jacket pump control panels, automatic transfer switches and remote monitoring panels</td>
<td></td>
<td>Div. 21</td>
<td>Div. 21</td>
<td>Div. 26</td>
<td>Div. 21</td>
</tr>
<tr>
<td>Fire Sprinkler System Control - Supervisory Panels & Devices, Including Tamper Switches & Flow Switches</td>
<td></td>
<td>Div. 21</td>
<td>Div. 21</td>
<td>N/A</td>
<td>Div. 28</td>
</tr>
</tbody>
</table>

TABLE NOTES:
1. Unless specified to be supplied with the equipment

END OF SECTION
SECTION 211313 - FIRE PROTECTION SYSTEM, AUTOMATIC WET-PIPE SPRINKLER

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplement General Conditions and the General Requirements.

B. Division 3 for concrete work.

C. Division 26 for electrical work and building fire alarm system.

1.2 RELATED SECTIONS

Section 21 0500 Common Work Requirements
Section 21 0503 Trenching and Backfilling for Mechanical Systems
Section 21 0504 Pipe and Pipe Fittings
Section 21 0505 Piping Specialties
Section 21 0523 Valves
Section 23 0549 Fire Suppression and Electrical Installation Coordination

1.3 SCOPE

A. Criteria: This Section covers the requirements for furnishing the design, fabrication, installation, and acceptance testing of a complete automatic wet-pipe sprinkler system.

B. Classification: In accordance with NFPA 13 and 101 requirements and recommendations.

C. Scope of Work: Provide the design, materials, equipment, fabrication, installation, labor, and supervision necessary to install, disinfect, flush, test, and place into service a complete wet-pipe sprinkler system.

1. Fully sprinkle the facility per NFPA-13, the International Building Code, International Fire Code, state and/or local Fire Marshal, and any specific requirements of the Owner's insurance underwriter.

D. Components: Provide all piping, fittings, control valves, check valves, alarm valve (with trim), tamper switches, fire department connection, sprinkler heads, hangers, bracing, test and drain connections, zone flow switches, tamper switches, accessories and incidentals required for a complete installation in accordance with codes and standards referenced in this Section.

E. Protect all fire lines subject to freezing in a manner approved by NFPA. Use anti-freeze loops only as approved by NFPA and the Local Fire Marshal and only with approved backflow protection in accordance with applicable building codes. Electric heat tape will not be permitted.

F. Conform to the applicable provisions of NFPA Standards 13 and 101 and to the requirements of the International Building Code. Unless otherwise shown on the Drawings or specified, all materials and equipment used in the installation of the fire protection systems shall be listed in the UL Fire Protection Equipment Directory, and shall be the latest design of the manufacturer. All fire hoses, threads and adapters shall match the standards of the City of Santa Fe.
G. Provide temporary fire protection within all areas of the building under construction as required by the building codes and the Fire Marshal.

1.4 QUALITY ASSURANCE

A. All materials and equipment used in the installation of the fire protection systems shall be UL listed and/or FM approved for intended use, unless stated otherwise in these specifications.

B. Contractor Qualifications: Contractor shall be experienced, licensed and regularly engaged in the design, fabrication, and installation of automatic fire protection sprinkler systems.

C. Certification: Welders and brazers shall be qualified per the ASME Boiler and Pressure Vessel Code, Section IX, Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators.

D. Employ skilled craftspersons and provide proper supervision to ensure the work is erected in a proper manner. Coordinate the work with existing conditions and other disciplines. Visit the premises and thoroughly understand the details of the work and working conditions, and verify all dimensions in the field. If discrepancies are noted which require clarification of the design intent, submit RFIs prior to performing related work. Lay out all work in a manner to avoid all interferences.

E. The drawings show only approximate building outlines and interior construction details as an aid in understanding the scope of work. Follow the drawings as closely as building construction and the work of other trades will permit. Investigate the structural and finish conditions affecting the work and arrange the work accordingly, providing such fittings, traps, valves, and accessories as may be required to meet such conditions. Field verify all dimensions and conditions governing the work.

F. Do not render inoperative any building system without prior approval. Coordinate necessary shutdowns through seven day advanced written notification.

G. Coordinate all fire protection piping and sprinklers with the ceiling or roof materials, lighting, ductwork, conduits, piping, suspended equipment, structural, and other building obstructions to provide an installation in compliance with the appropriate building codes, and NFPA Standards.

1.5 EXISTING CONDITIONS

A. Examine existing conditions and related work required for the design and installation of the fire suppression system.

B. Perform all field tests and inspections as may be necessary to determine water flow, fire protection and pressure characteristics (static and residual pressure and residual flow) necessary for the design and installation of the fire protection system. Contact the water utility to determine whether they anticipate any degradation in the available water source. Prior to starting design, procurement, and installation, submit to the Owner and Engineer a written report documenting the results of this discussion with the water utility.

1.6 SUBMITTALS

A. See Division 1 and Section 21 0500 for general submittal requirements.

B. Within 45 days after the contract is awarded, provide submittal data for the complete fire suppression system for review.
1. Submit sprinkler system design drawings and hydraulic calculations to the Fire Marshal, the Building Department AHJ, and the Owner’s Insurer for review, comment, and approval.
 a. Drawings must be prepared by either a minimum Level 3 NICET Certified Technician, or a professional engineer.
 b. Drawings must be stamped by a professional engineer registered in fire protection.

2. Upon receipt of stamped and approved system design drawings and hydraulic calculations from the Fire Marshal, the Building Department AHJ, and the Owner’s Insurer, submit required sets of complete submittal data to the Architect as per spec Section 21 0500.

C. Submit complete data describing all equipment and materials to be furnished including performance, quality, dimensions, and certifications of approving agencies. Include plans showing location and arrangement of water supply connection, control valve, fire department connections, alarm bells, tamper switches, on-site fire main routing, on-site fire hydrants and other equipment to be used; and including head layouts coordinated with lighting, plumbing and air conditioning systems. Submittals shall include the following:

1. Shop drawings.
2. Certifications (after installation and tests are completed).
3. Equipment list.
4. Material list.
5. Installation instructions.
7. Operating instructions.
8. Samples, colors.
9. Welder’s certification.
10. Catalog data (appropriate unit identified on cut).
11. Recommended spare parts lists.
12. Verifiable calculations.
13. Nameplate data.

D. Complete Package: Submit fire suppression work as a complete package to permit analysis of the system(s) and its components. Partial submittals will not be accepted.

E. Hydraulic Calculations: Submit computerized hydraulic calculations. Maintain a minimum of 10 percent, but not less than a 5 psi buffer below the final water supply curve after accounting for required hose streams, pipe friction elevation differences, etc. Hydraulic design sprinkler system shall be in accordance with the following:

1. Sprinkler System Occupancy Hazard Classifications:
 a. Office and Public Areas: Light Hazard
 b. Storage Areas: Ordinary Hazard
 c. Equipment Rooms: Ordinary Hazard
 d. Service Areas: Ordinary Hazard

2. Minimum Density Requirements for Automatic Sprinkler Hydraulic Design:
 a. Light Hazard Occupancy: 0.10 gpm over 1500 sf area.
 b. Ordinary Hazard, Group 1 Occupancy: 0.15 gpm over 1500 sf area.
 c. Ordinary Hazard, Group 2 Occupancy: 0.20 gpm over 1500 sf area.
d. Special Occupancy Hazard: As determined by authority having jurisdiction.

F. Shop Drawings: Minimum 1/8" = 1'0" for plans, and 1/4" = 1'0" for details, with minimum 3/16 inch lettering. Show all piping, sprinklers, hangers, flexible couplings, roof construction, electro-mechanical devices, and occupancy of each area, including ceiling and roof heights as required by NFPA 13. Show hydraulic reference points and remote areas.

G. Record Drawings: Provide mylar reproducible record drawings and AutoCAD 2008 files showing all work under this contract. Indicate any special systems or devices such as dry pendant heads, antifreeze loops, inspector’s test connections, etc. Submit record drawings prior to requesting final payment.

1.7 PRODUCT HANDLING

A. Materials and Equipment: Protect materials and equipment from damage during shipping, storage, and installation.

B. Materials and Equipment Installation: Ensure materials and equipment are free of moisture, scale, corrosion, dirt, and other foreign materials prior to installation.

C. Plugs and Cover Plates: Protect flanged openings with gasketed metal cover plates to prevent damage during shipment. Cap or plug all drains, vents, and small piping or gauge connections.

D. Sprinkler Head Protection: Remove frangible bulb protectors after sprinkler heads are installed. Protect sprinkler heads with factory-supplied caps and covers until ceiling installation is complete.

1.8 ENVIRONMENTAL CONDITIONS

A. The sprinkler system and system components shall be designed to operate at an elevation of 7200 feet above sea level and in freezing temperatures when exposed to outside conditions.

1.9 ALARM FACILITIES

A. Provide water flow switches and tamper switches. Integrate these and other required sprinkler system alarm devices into the building fire alarm system provided under Division 26. Coordinate with Division 26, Fire Detection and Alarm, regarding the requirements and location of items provided under this section which must be integrated with the fire alarm system.

B. Provide tamper switches on all required valves and devices used in conjunction with the building fire protection system.

1.10 ELECTRICAL CONNECTIONS

A. The fire alarm system will monitor waterflow indicators, tamper switches, etc., provided under this Section.

PART 2 - PRODUCTS

2.1 GENERAL

A. All material and equipment furnished shall be in accordance with the following requirements and NFPA 13. All fire protection materials and equipment shall be new and unused, shall be free of defects and specifically designed for the use intended, shall conform to the requirements of NFPA 13, and shall be UL listed and FM approved, unless otherwise noted in the Specification.
B. Any deviation to the above requirements shall be submitted to the Architect for approval. The deviation submittal shall be clearly identified as a "deviation."

2.2 PIPING MATERIAL

A. Material Requirement: Automatic sprinkler piping shall be in accordance with this Section and NFPA 13, respectively.

B. Underground piping, to a point 5'0" from the building perimeter, shall be as specified for underground water services Section 22 6801, Outside Utilities of this Specification.

C. Underground piping within the building and to a point 5'0" from the building perimeter shall be AWWA Class 200 ductile iron water main pipe and fittings with mechanical joints. Interior of pipe and fittings shall be cement lined. Exterior of pipe and fittings shall be bituminous coating or equivalent. All changes in direction shall be adequately blocked or strapped to prevent separation of joints.

D. Interior building piping systems shall be black steel pipe ASTM A120, or A53 Grade A or B, ERWQ or BW, Standard wall, Schedule 40. UL and FM approved thin wall (Schedule 10, minimum) ASTM A135 or A795 piping may be utilized for sprinkler system as allowed by NFPA and the Fire Marshal. Piping installed outside or exposed to outdoor ambient conditions shall be galvanized.

2.3 FITTINGS

A. Changes of direction shall be accomplished by the use of fittings suitable for use in sprinkler systems as defined in Article 3-13 of NFPA 13. Fittings installed outside or exposed to outdoor ambient conditions shall be galvanized.

B. Fittings and specials for ductile iron pipe shall be Class 250 to match pipe, conforming to AWWA C110, mechanical flange joint type. All ductile iron fittings shall be cement lined.

C. Fittings for steel pipe shall be cast iron screwed, welded fittings, or UL and FM approved mechanical pipe couplings and fittings as manufactured by Victaulic or equivalent in accordance with requirements specified in Section 21 0504.

2.4 JOINTS

A. Joints shall be provided in accordance with Section 21 0504, Pipe and Pipe Fittings, and the manufacturer's instructions. Threaded joints for thin-wall (Schedule 10) piping shall be provided in strict accordance with NFPA requirements, UL and FM approvals for threadable thin-wall piping.

2.5 UNIONS AND FLANGES

A. Unions and flanges shall be provided in accordance with Section 21 0504, Pipe and Pipe Fittings. Gaskets shall be as recommended by the manufacturer and suitable for service on which used.

2.6 HANGERS AND SUPPORTS

A. See Section 21 0504, Pipe and Pipe Fittings, for general requirements associated with equipment piping systems hangers and supports. Seismic supports for fire protection system shall be provided in accordance with NFPA requirements.

B. All fire protection piping shall be rigidly supported from the building structure by means of adjustable
ring type hangers. Piping hangers shall be spaced as specified in NFPA 13, Chapter 2. Piping system shall be installed in an approved manner and shall not overload the structure. The Contractor shall provide additional hangers and steel support members as may be required to distribute the piping weight over several structural members where required or directed. Fire protection piping system shall be supported independent and shall not be attached or supported from hangers, trapezes, or supports provided for other piping systems or equipment.

2.7 VALVES

A. See Section 21 0523, Valves, for general valve requirements. All valves for fire hose fire department connections shall have threads and adapters to match the standard of the City of Santa Fe Fire Department. All valves shall be UL listed and FM approved. Valve sizes shall be determined by the approved hydraulic calculations. Outside screw and yoke valves shall be indicated on the approved hydraulic calculations. Tamper switches shall be provided on all valves controlling fire protection system operation, as required by NFPA, Valves shall be rated for working pressure not less than the maximum pressure to be developed at that point in the system under any operating condition.

B. Gate valves 2" and under, shall be bronze body and trim, outside screw and yoke, wedge disc, screwed connections, 400 psi W.O.G. maximum working pressure.

C. Gate valves, 2-1/2" and larger, shall be Class 125 or Class 250, as required, with flanged ends, outside screw and yoke, bronze seals, wedge disc, iron body.

D. Drain valves shall be globe valve or angle body globe valve, with screwed ends, bronze body and trim, 200 psig W.O.G. maximum working pressure. Furnish and install as required by NFPA No. 13.

E. Swing check valves 2" and smaller shall be y-pattern, horizontal swing bronze body, bronze trim, 200 psig W.O.G. screwed connections.

F. Swing check valves 2-1/2" and larger, shall be iron body, clearway swing check, Class 125 or Class 250 as required with flanged or grooved connections.

G. Automatic Ball Drips: Automatic ball drips shall be 1/2" or 3/4" as required normally open, which close when the flow of water through the valve exceeds 4 to 10 gpm, 175 psig working pressure, Underwriters' Laboratories, Inc., or Factory Mutual approved, Standard Fire West No. 5248 or equivalent.

H. Post indicator fire main control valve shall be vertical post type for underground valve control provided as shown on the Drawings, Underwriters' Laboratories, and Factory Mutual approved pattern with approved gate valve and tamper switch. See Section 22 6801 for vertical post indicated and underground valves. Vertical post indicator shall be Mueller Co. Model A-20804 with Mueller AWWA non-rising stem gate valve, A-2050 Series or equivalent.

2.8 ALARM CHECK VALVES

A. Furnish complete wet-pipe sprinkler system alarm check valve assembly with all accessories required for system operation, supervision and alarm. Valves shall be UL listed and FM approved, designed to automatically activate electrically and/or hydraulically operated alarms and shall be furnished in the required size and arrangement with either flanged or grooved connections.

B. Furnish retard chamber, pressure gauges, valves, and trim including water motor gong and alarm switch with both normally open and normally closed electrical contacts.
C. Alarm check valve assembly shall be as manufactured by Tyco Fire Products or equivalent.

2.9 PRESSURE GAUGES

A. Pressure gauges shall be designed for use with water. Gauges shall be of the Bourdon type having an enclosed phosphor-bronze type. The moving parts shall be brass or stainless steel except the hairspring, which is phosphor-bronze. The case and ring shall be brass or stainless steel, and the ring shall be either threaded or pressed over the case. Gauges shall be 4-1/2 inch size with dial marking subdivisions no finer than one percent of the maximum scale reading, and shall be accurate to two percent or less. The gauge scale, when possible, shall be at least twice the maximum working pressure. All gauges shall be FM approved and UL listed.

2.10 TAMPER SWITCHES

A. All valves which control water to automatic sprinkler heads shall be equipped with supervisory switches having one normally open contact and one normally closed contact. Valve supervisory switches shall be single pole double throw switching contacts, and shall be housed in a gasketed weathertight enclosure. The supervisory device supplied shall be specifically designed to mount on, and operate reliably with, the type of control valve being monitored. All valve position switches shall be adjusted to transmit a supervisory signal within two revolutions of the valve operating hand wheel or crank (away from its full open position).

2.11 FLOW SWITCHES

A. Water flow switches shall be field adjustable vane-type with pneumatic retard and 175 psi working pressure. Units shall be single pole double throw, normally open, suitable for 24-volt, DC service or as otherwise required to interface with Building Fire Alarm system. Water flow switches shall be adjusted so that the device will transmit a water flow alarm within 90 seconds of opening the inspector’s test valve on the sprinkler system. The flow switch shall be furnished and installed under this Section of Specifications and electrically connected under Division 26. Flow switches when required for zoning shall be piped and installed so that only one flow switch actuates when an alarm in that zone is present.

2.12 SPRINKLER HEADS

A. Sprinkler heads and accessories shall be UL listed or FM approved for the intended service, quick response automatic closed type, 165 deg F rated with 1/2” orifice, except as may be otherwise required for the specific application, and subject to NFPA 13 and 101 requirements and recommendations. Sprinkler heads with higher temperature ratings shall be installed in electrical and mechanical equipment areas, in areas where occupancy may generate high ambient temperatures, where installed in the vicinity of heat producing equipment, attic spaces, where exposed to the direct rays of the sun and beneath skylights and windows, and at other such locations as required by NFPA 13.

B. Sprinkler heads installed in unfinished areas without suspended ceilings shall be upright bronze or brass. Sidewall type heads may be used in areas with low headroom as approved by the Fire Marshal.

C. Sprinkler heads in areas with suspended ceilings including toilet facilities, storage rooms, and similar building spaces shall be chrome plated bronze pendant type. Sidewall heads in finished areas shall be horizontal, chrome plated bronze.

D. For all building areas, except as indicated above, furnish concealed sprinkler heads consisting of sprinkler head installed within brass enclosure assembly with cover plate with white finish as approved by the Architect.
E. Supply spare heads of each type as required by NFPA 13. Provide a metal cabinet with a sprinkler head wrench for each type head.

F. Provide sprinkler head guards where required by NFPA 13 and where appropriate.

G. Approved Manufacturers: Tyco Fire Products, Viking, or equivalent.

2.13 SYSTEM ACCESSORIES

A. Fire Department Connections: Fire department connections shall be of the type and style shown on the fire protection drawings, cast brass body, double clappers, plugs, and attached chains. All exposed surfaces, caps and chains shall be chrome plated. Identification shall be by raised letters on the individual devices, or shall consist of attached escutcheon plates of the same material. Label shall read "AUTO SPKR". The dimension from grade level to the center of the 2-1/2-inch inlets shall be 34 inches (plus or minus 2 inches). Make the fire department connection above the inlet to the alarm valve.

B. Plaques: Main riser plaques shall be 7 inches by 10 inches with four mounting holes (one in each corner), and shall have white lettering on red porcelain with white blank for the "design data." Plaque shall meet all requirements of NFPA 13, Chapter 7.

C. Strainers: Strainers, where required, shall be "Y" type with cast iron body, 30 mesh monel screen, flanged ends, 1-1/2-inch blow down connection discharging to outside, and shall be rated at 175 psi working pressure for cold water service.

D. Splash Blocks: Splash blocks shall be concrete, 12 inches by 24 inches by 4 inches thick. A commercially available splash block may be provided as a suitable alternate.

2.14 ACCESS DOORS

A. All concealed valves, controls, etc., shall be provided with access doors as specified under Section 210500, Common Work Requirements.

PART 3 - EXECUTION

3.1 FIELD CONDITIONS

A. Prior to installation the Contractor shall carefully inspect the installed work of all other trades and verify that all such work is complete to the point where the installation of the sprinkler system may properly commence.

B. The Contractor shall verify that the entire sprinkler system may be installed in accordance with all referenced codes, regulations, standards, and the original approved design.

3.2 INSTALLATION

A. General

1. The complete fire protection system shall be installed in accordance with NFPA 13. The project drawings provide general information concerning the system arrangements, equipment, material, sizes, and other requirements and shall be utilized by the Contractor for this purpose. However, the Contractor shall have complete responsibility for the system design and installation in accordance with the requirements of this Specification.

2. All pipe, fittings, valves, equipment, and accessories shall be visually examined to ensure that...
they are clean and free of all burrs, cracks, and other imperfections before being installed. During the progress of construction, open ends of pipes, fittings, and valves shall be properly protected at all times to prevent admission of foreign matter.

B. Piping

1. Installation of fire sprinkler piping system shall be in accordance with all applicable requirements contained in Section 21 0500 – Common Work Requirements, Section 21 0504 – Pipe and Pipe Fittings, and Section 21 0505 – Piping Specialties.
2. All fire sprinkler piping shall be so arranged and include such devices to separate the system into individual and distinct alarm zones as shown on the contract drawings and as required by NFPA recommendation and the Fire Marshal. A minimum of one zone per floor will be required unless shown otherwise on the contract drawings.
3. Sprinkler piping shall be marked and identified in accordance with Section 21 0500, Common Work Requirements.
4. The arrangements of all piping systems shall conform to Architectural requirements and field conditions, and shall be run straight and direct, forming right angles or parallel lines with building walls and other pipes, and shall be neatly spaced. Offsets will be provided where required. Standard fittings shall be used for offsets. All risers shall be erected plumb and true, and shall be parallel with the walls and other pipes and shall be neatly spaced. All work shall be coordinated with all Sections of Division 21, 22, and 23, and Division 26, "Electrical," in order to avoid interference of pipe and unnecessary cutting of floors and walls.
5. No pipes or other apparatus shall be installed so as to interfere in any way with the full swing of the building doors, access doors, equipment access, etc.
6. Inspector’s test and test pipes shall be piped from the end of the most remote branch line of the automatic sprinkler system to the exterior of the building.
7. When trapped capacity is more than five gallons, provide auxiliary drains consisting of a one-inch valve, nipple, and cap. When trapped capacity is less than five gallons, auxiliary drain shall be one-inch nipple and cap or plug.
8. Provide main drain valves at system alarm valves and extend piping to discharge at exterior at a location approved by the Architect. All pipe and fittings downstream of drain valve shall be galvanized.
9. All concrete penetrations shall be sleeved, then grouted and sealed with fire-resistive material that shall be securely held in place.

C. Welding

1. No field welding of sprinkler piping shall be permitted.
2. Headers, risers, feed, cross mains, and branch lines may be shop welded using approved welding fittings. Welding and brazing shall conform to American National Standard Institute for Power Piping, ANSI B 31.10, with Addenda ANSI B 31.10a and ANSI B 31.10b. Welding and torch cutting shall not be permitted as a means of installing or repairing sprinkler systems.
3. Provide a blind flange at each end of welded headers.
4. Welders and brazers shall be certified for welding and/or brazing in accordance with the requirements of ASME Boiler and Pressure Vessel Code, Section IX, Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and Welding and Brazing Operators. Welders must be certified for work they perform, and certificates shall be checked before the work commences.

D. Alarm Check Valve: Alarm check valves shall be installed with the valve and trim set plumb, and shall be unobstructed. Clear distances shall be as listed below:

Rear: 12 inches
E. Control Valves: OS&Y fire protection control valves shall be installed so that the stem can be readily seen.

F. Sprinklers and Accessories

1. Sprinkler heads in finished areas are to be installed on a true axis line in both directions with a maximum deviation from the axis line of 1/2” plus or minus. Heads exceeding this shall be removed and reinstalled. Sprinkler heads shall be located in the center of the ceiling tiles, unless otherwise directed.

2. Provide chrome-plated escutcheons where exposed piping passes through finished floors, walls, partitions, and ceilings. Secure plates to pipe with setscrews or spring clips.

3.3 EQUIPMENT INSTALLATION

A. Installation of all devices or equipment not specifically covered by these Specifications shall be in accordance with manufacturer’s instructions.

3.4 TEMPORARY FIRE PROTECTION

A. During the construction of the building and until the permanent fire extinguishing system has been installed and is in service, temporary fire protection shall be provided as required by the Fire Marshal.

3.5 INSPECTION AND TESTING

A. The complete fire protection systems and piping acceptance testing shall be performed by the Contractor and witnessed. Advance notice shall be given by the Contractor prior to any tests.

B. Inspection Prior to Testing: The Contractor shall submit notification upon completion of the installation of all materials and equipment.

C. Water Piping Disinfection: The Contractor shall furnish all hoses, connections, and equipment to flush piping clear and free of debris and to rinse piping of disinfectant. Flushing per NFPA Figure A-10.10-2.1. All fittings and connections required for water piping, flushing, and disinfection shall be furnished by the Contractor.

D. Chlorine Application: Water from the existing distribution system, or other approved supply source, shall be made to flow at a constant measured rate into the newly installed piping. The water shall receive a minimum chlorine dosage of 300 mg/l. The Contractor shall not allow any anti-freeze glycerine to come in contact with the chlorine. The chlorine shall be applied continuously and for a sufficient period to develop a solid column of chlorinated water that will expose all interior surfaces to a concentration of at least 30 mg/l for at least three hours. The application shall be checked at a tap near the downstream end of the line by chlorine residual measure. The chlorine residual measurement test shall be performed by the Contractor and the results submitted.

E. Final Flushing: After the applicable retention period, the heavily chlorinated water in the entire system shall be flushed until the chlorine concentration is not higher than that of the source.

F. Pressure Testing: Pressure tests shall consist of at least flushing, hydrostatic testing, and operation testing and shall be performed in strict accordance with the requirements of NFPA 13.
above-grade piping, test pressure of 200 psi shall be held for a continuous period of two hours with no drop in pressure. Each complete system (main riser with all associated piping and alarms) shall be tested and accepted as a complete unit. System pressure test shall be against a blank test flange and not against a valve seat. Tests may be conducted by the Contractor on small sections of each complete unit for the benefit of the Contractor. An air pressure test may be provided in accordance with NFPA 13. An air pressure of 40 psig shall be pumped up, allowed to stand 24 hours, and all leaks which allow a loss of pressure over 1.5 psig during the 24 hours shall be fixed.

G. Unsatisfactory Tests: If any of the above tests fail to produce satisfactory results, tests shall be repeated at no additional cost to the Owner until satisfactory results have been obtained.

3.6 CERTIFICATION

A. The Contractor shall certify that the system has been installed in accordance with all referenced codes and standards. The Contractor shall submit this certification upon completion of tests.

3.7 MAINTENANCE AND OPERATING INSTRUCTIONS

A. System description, system theory of operation, and system final inspection and acceptance documents of the completed system shall be submitted in a bound book (four copies). The maintenance manuals and instructions shall include a brief description of the type of system installed, routine-type work defined by step-by-step instructions that should be performed to ensure long life and proper operations, and the recommended frequency of performance. The instructions shall also include possible trouble spots with diagnosis and suggested correction of each. The theory of operation brochures shall describe the function of each component or subassembly. A copy of the completed Contractor’s Materials and Test Certificate (reference NFPA-13, Chapter 24) shall be included to document the final inspection, operating test, acceptance and placement of system in service.

END OF SECTION
SECTION 220500 - COMMON WORK REQUIREMENTS FOR PLUMBING

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. See General Conditions and Supplemental General Conditions.

B. The requirements listed under General Conditions and Supplemental General Conditions and the General Requirements are applicable to this section and all subsequent Sections of Division 22 and form a part of the contract.

C. Division 21 for Fire Suppression Systems.

D. Division 23 for Heating, Ventilating & Air Conditioning (HVAC) Systems.

E. Division 26 for Electrical Systems.

F. Division 31 and Section 22 0503 for Trenching, Backfilling and Compaction requirements.

G. Division 33 for requirements of site utility systems including sanitary sewer, storm sewer, domestic water distribution system, and Section 22 6801 for natural gas service.

H. All electrical work, regardless of voltage which is provided under Division 22 shall comply with the requirements of the National Electric Code (NEC) and Division 26.

1.2 PLUMBING DIVISION INDEX

Section 22 0500 Common Work Requirements for Plumbing
Section 22 0502 Installation of Owner-Supplied Equipment for Plumbing
Section 22 0503 Trenching and Backfilling for Plumbing
Section 22 0504 Pipe and Pipe Fittings for Plumbing
Section 22 0505 Piping Specialties for Plumbing
Section 22 0523 Valves for Plumbing
Section 22 0548 Vibration and Seismic Controls for Plumbing
Section 22 0549 Plumbing and Electrical Installation Coordination
Section 22 0700 Plumbing Insulation
Section 22 1100 Domestic Water Piping
Section 22 1123 Facility Natural Gas System
Section 22 1316 Sanitary Waste and Vent Piping
Section 22 1400 Facility Roof and Area Drainage
Section 22 1500 Compressed-Air Systems
Section 22 4000 Plumbing Fixtures and Trim
Section 22 6801 Outside Utilities

1.3 CODES AND PERMITS

the State of New Mexico, City of Santa Fe, and the National Fire Protection Association (NFPA Regulations), current adopted edition, regarding plumbing systems and electrical systems. All materials and labor necessary to comply with rules, regulations and ordinances shall be provided. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern. The Contractor shall hold and save the Architect free and harmless from liability of any nature or kind arising from his failure to comply with codes and ordinances.

B. Permits necessary for performance of the work shall be secured and paid for by the Contractor. All utility connections, extensions, meter pits and meter sets and tap fees for water, storm sewer, sanitary sewer and natural gas shall be paid for by the Contractor, unless otherwise specified herein. See Division 33 for all requirements associated with utility permits and fees, connections, extensions, meter pits, and meter sets.

C. The following lists some applicable codes and standards that shall be followed.

- Applicable county and state mechanical, electrical, gas, plumbing, health and sanitary codes, laws and ordinances.
- National Electrical Manufacturer's Association Standards
- National Electrical Code
- Underwriters Laboratories, Inc. Standards
- American National Standards Institute
- American Society for Testing Materials Standards
- Standards and requirements of local utility companies.
- National Fire Protection Association Standards
- American Society of Mechanical Engineers Boiler and Pressure Vessel Codes
- Occupational Safety and Health Act
- Commercial and Industrial Insulation Standards (MICA)
- American Gas Association
- The American Society of Sanitary Engineering
- National Sanitation Foundation

1.4 RECORD DRAWINGS

A. See Division 1, for requirements associated with Project Record Drawings.

B. The Contractor shall be responsible to maintain a complete and accurate set of marked up blue-line prints showing information on the installed location and arrangement of all plumbing work, and in particular, where changes were made during construction. The Contractor shall be responsible for keeping record
drawings accurate and up-to-date throughout the construction period. Record drawings may be reviewed and checked by the Architect during the construction and in conjunction with review and approval of monthly pay requests. Contractor shall include copies of all addenda, RFI's, bulletins, and change orders neatly taped or attached to record drawing set.

C. After installation and acceptance of direct buried underground piping and service lines in trenches, the Contractor shall take ‘as-built’ measurements, including all depths, prior to commencement of backfilling operations. It will not be sufficient to check off line locations. Definite measurements shall be taken for each service line. The location of buried piping and trench service lines shall be shown on the drawings and dimensioned from fixed points.

1.5 QUALIFICATIONS

A. All mechanics shall be skilled in their respective trade.

B. All welders shall be certified in accordance with the ASME Boiler Test Code, Section IX, latest issue.

1.6 QUALIFICATION PROCEDURES

A. The storage, handling, and transportation of all refrigerants, oils, lubricants, etc. shall be accomplished in strict compliance with all State, local, and Federal Regulations including all requirements set forth by the Environmental Protection Agency (EPA) for the safe handling of regulated refrigerants and materials. The Contractor shall utilize qualified and/or certified personnel and equipment as prescribed by these requirements. In no situation shall any refrigerant be discharged to the atmosphere.

1.7 HAZARDOUS CONDITIONS

A. Protruding metal (bolts, steel angles, etc.) potentially hazardous to maintenance and operation personnel, shall be cut back and/or protected to reduce the risk of injury.

1.8 HAZARD SIGNS

A. Equipment rooms, fan plenums, and similar areas containing moving or rotating parts, or other potentially hazardous environments shall include signs on all doors entering such spaces that shall read similar to the following: "Hazardous Area - Authorized Personnel Only."

B. Confined Spaces: Areas designated by OSHA Standard 1910.146 as a confined space shall be marked with a sign that reads "Confined Space - Entry by authorized personnel only, by permit."

1. "Confined Space" means a space that:

 a. Is large enough and so configured that an employee can bodily enter and perform assigned work; and

 b. Has limited or restricted means for entry or exit (for example, tanks, vessels, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry); and

 c. Is not designed for continuous employee occupancy.

C. The Contractor shall survey the final premises to determine where any such potentially hazardous areas exist. If the Contractor feels that hazards exist which cannot be suitably provided for through the above typical methods, he shall forward in writing his concerns, and request for a decision concerning the referenced hazard, prior to the final inspection of the facilities.
1.9 SUBMITTALS

A. The Contractor shall submit submittal brochures of all equipment, fixtures and materials to be furnished under Division 22, including but not limited to the following:

1. Piping materials, valves, insulation materials and installation methods, vibration isolation devices, pipe penetration installation methods and products for fire rated assemblies, and all plumbing equipment listed on equipment schedules, and in related construction documents.
2. Materials, certification, shop drawings, and other information as specified in the individual Division 22 Specification Sections within this Specification.

B. Unauthorized Substitutions: If substitute materials, equipment or systems are installed without prior review or are installed in a manner which is not in conformance with the requirement of this Specification and for which the Contractor has not received a written review, removal of all the unauthorized materials and installation of those indicated or specified shall be provided at no change in contract amount.

C. All equipment shall be installed in accordance with the manufacturer's recommendations. Provide all accessories and components for optimum operation as recommended by the manufacturer.

D. Expense: All costs for the preparation, correction, delivery, and return of the submittals shall be borne by the Contractor.

E. Submittals and one resubmittal will be reviewed by the Architect/Engineer. If the Contractor fails to provide the required data with his second submittal, he will be charged for the third and subsequent reviews.

F. See Division 1 for additional submission requirements.

G. The Contractor shall submit a maximum of seven (7) copies of submittal brochures for review. Brochures shall be submitted within thirty (30) days after contract award. One (1) copy of all submittals will be retained by the Engineer. The remaining copies will be returned to the Architect. Additional sets of submittals, if required by the Contractor, shall be reproduced by the Contractor from the reviewed and marked sets returned to the Contractor.

H. Complete data must be furnished showing performance, quality and dimensions. No equipment or materials shall be purchased prior to receiving written notification that submittals have been reviewed and marked either "NO EXCEPTIONS TAKEN" or "EXCEPTIONS AS NOTED." Submittals returned marked "EXCEPTIONS AS NOTED" do not require resubmittal provided that the Contractor agrees to comply with all exceptions noted in the submittal, and so states in a letter.

I. Review of Submittals: Submittals will be reviewed with reasonable promptness, but only for conformance with the design concept of the Project and for conformance with the information indicated on the Drawings and stated in the Specifications. Review of a separate item as such will not indicate review of the assembly in which the item functions. Review of submittals shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents, nor for errors or omissions in the submittals; or for the accuracy of dimensions and quantities, the adequacy of connections, and the proper and acceptable fitting, execution, functioning and completion of the work. Review shall not relieve the Contractor of responsibility for the equipment fitting within the allotted space shown on the drawings with all clearances required for equipment operation, service and maintenance including minimum clearances required by applicable codes, manufacturer's installation instructions and as necessary for proper clearance in front of all electrical panels as defined by the National Electric Code (NEC). Any relocation of plumbing and/or electrical
equipment, materials and systems required to comply with minimum clearances shall be provided by the Contractor without additional cost under the Contract.

J. Shop drawings will be returned unchecked unless the following information is included: cover sheet shall be provided for each submittal of equipment, products and material proposed for use on the project. A common cover sheet for similar equipment (example: all air handling units or all fire protection products) is acceptable. The cover sheet shall list equipment by symbol number; reference all pertinent data in the Specifications or on the drawings; provide size and characteristics of the equipment, name of the project and a space large enough to accept a review stamp. The data submitted shall reflect the actual equipment performance under the specified conditions and shall not be a copy of the scheduled data on the drawings. Cover sheet shall clearly identify any deviations from the specifications for submitted equipment, products, and materials.

K. Use of substitutions reviewed and checked by the Engineer does not relieve the Contractor from compliance with the Contract Documents. Contractor shall bear all extra expense resulting from the use of any substitutions where substitutions affect adjoining or related work required in this Division or other Divisions of this Specification.

L. If Contractor substitutes equipment for that drawn to scale on the drawings, he shall prepare a 1/4" = 1'-0" installation drawing for each equipment room where a substitution is made, using dimensions of substituted equipment, and including piping, and electrical equipment requirements, to verify that equipment will fit space with adequate clearances for maintenance. This 1/4" = 1'-0" fabrication drawing shall be submitted for review with the shop drawing submittals of the substitution. Failure to comply with this requirement will result in the shop drawings being returned unchecked.

1.10 COORDINATION DRAWINGS

A. The Contractor shall, in advance of the work, prepare coordination drawings for:

1. Equipment rooms, and other spaces housing plumbing and equipment, etc.
2. Piping and chases.
3. Complete plumbing piping systems located within the building.
4. Layout of all plumbing equipment.

B. Show the location of piping openings through the building floors, walls and roofs coordinated with Architectural and Structural, as well as the location and elevations of building fire suppression equipment and systems, including piping, coordinated with HVAC plumbing, fire suppression and electrical systems. Coordination drawings, including plans, elevations and sections, as appropriate, shall clearly show the manner in which the plumbing systems fit into the available space and coordinates with HVAC and plumbing equipment, ductwork, piping, sprinkler heads, and electrical equipment, including conduits, light fixtures, motor control centers, transformers, panels, variable frequency drives, etc. Drawings shall demonstrate required code clearances for mechanical and electrical equipments, control panels, etc., and proper operation, maintenance and replacement of plumbing devices and equipment. Coordination drawings shall be of appropriate scale to satisfy the previously stated purposes, but not smaller than 1/8 inch scale for floor plans and 1/4 scale of equipment rooms and chase areas. Drawings may be composite or may be separate but fully coordinated drawings of the same scale. Every subcontractor must sign-off on coordination drawings prepared by each craft. Failure to sign-off will indicate that subcontractor is proceeding at his own risk. Any cost required to relocate systems to comply with required clearance and equipment installation requirements shall be provided by the Contractor without additional cost under the contract.

C. Seven (7) complete sets of coordination drawings shall be submitted prior to the scheduled start of the work.
in the area illustrated by the drawings, for the purpose of showing the Contractor’s planned method of installation. The objectives of such drawings are to promote carefully planned work sequence and proper coordination, in order to assure the expeditious solutions of problems, and the installation of lines and equipment as contemplated by the contract documents while avoiding or minimizing additional costs to the Contractor and to the Owner.

D. In the event the Contractor, in coordinating the various installations and in planning the method of installation, finds a conflict in location or elevation of any of the plumbing systems, with the structural items or with other construction items, such conflicts shall immediately be documented and submitted for clarification. In doing so, the Contractor shall explain the proposed method of solving the problem, or shall request instructions as to how to proceed if adjustments beyond those of usual trades coordination are necessary.

E. Installation of plumbing work shall not proceed prior to the submission and completion of the review of the coordination drawings, and any conflicts which are disclosed by the coordination drawings. It is the responsibility of the Contractor to submit the required drawings in a timely manner consistent with the requirements for completing the work covered by this contract within the prescribed contract time.

1.11 USE OF CADD FILES

A. Under certain conditions, the Contractor will be permitted the use of the Engineer’s CADD files for documentation of as-builts, submittals, or coordination drawings.

B. The Engineer shall be compensated for the time required to format the CADD files for delivery to the Contractor. Such work may include removal of title blocks, professional seals, calculations, proprietary information, etc.

C. The Contractor shall complete the enclosed License, Indemnity and Warranty Agreement, complete with contractor’s name, address, and Contractor’s Representative signature prior to request for CADD file usage.

1.12 PRIOR APPROVAL

A. Prior approval (approval prior to bid) of alternate mechanical equipment suppliers and service providers is not required. Please do not request prior approval. Alternate manufacturers and service providers may be submitted after bid in accordance with the submittal process provided they meet or exceed the specifications and the indicated design intent.

1.13 GUARANTEE-WARRANTY

A. See Division 1 for warranties.

B. The following guarantee is a part of the specifications and shall be binding on the Contractor:

"The Contractor guarantees that this installation is free from defects. He agrees to replace or repair any part of the installation which may fail within a period of one year after date established below, provided that such failure is due to defects in the materials or workmanship or to failure to follow the specifications and drawings. Warranty of the Contractor-furnished equipment or systems shall begin on the date the system or equipment is placed in operation for beneficial use of the Owner or occupancy by the Owner, whichever occurs first; such date will be determined in writing, by means of issuing a 'Certificate of Substantial Completion', AIA Form G704", or equivalent.
C. The extent of guarantees or warranties by Equipment and/or Materials Manufacturers shall not diminish the requirements of the Contractor’s guarantee-warranty to the Owner.

D. All items of plumbing equipment shall be provided with a full one (1) year parts and labor warranty, from the date of acceptance by the Owner.

PART 2 - PRODUCTS

2.1 QUALITY OF MATERIALS

A. All equipment and materials shall be new, and shall be the standard product of manufacturers regularly engaged in the production of plumbing equipment and shall be the manufacturer’s latest design. Specific equipment, shown in schedules on drawings and specified herein, is to set forth a standard of quality and operation.

B. Hazardous or Environmentally Damaging Materials: Products shall not contain asbestos, mercury, PCS, or other materials harmful to people or the environment.

2.2 ALTITUDE RATINGS

A. Unless otherwise noted, all specified equipment capacities are for an altitude of 7200 feet above sea level and adjustments to manufacturer’s ratings must be made accordingly.

2.3 ELECTRICAL SERVICES - MOTORS

A. Each motor, unless otherwise specified of 3/4 HP and greater, shall be designed for operation with 3 phase, 60 Hz, 480 volt electrical service. Unless otherwise specified, motors of 1/2 hp and less shall be designed for operation with single phase, 60 Hz, 120 volt electrical service. Motors shall be 1750 RPM, squirrel cage, normal starting torque and normal starting current, in accordance with NEMA standards unless otherwise specified.

B. All T-frame, ODP motors 5 HP and above shall be premium efficiency motors with a minimum power factor of 0.85 on 1800 RPM motors and a minimum efficiency rating in accordance with IEEE Standard 112, Test Method ‘B’ as scheduled below. In addition, all motors used in conjunction with variable frequency drives shall be premium efficiency.

<table>
<thead>
<tr>
<th>Motor Horsepower</th>
<th>Efficiency, Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>90.2</td>
</tr>
<tr>
<td>7-1/2</td>
<td>91.0</td>
</tr>
<tr>
<td>10</td>
<td>91.7</td>
</tr>
<tr>
<td>15</td>
<td>92.4</td>
</tr>
<tr>
<td>20</td>
<td>93.0</td>
</tr>
<tr>
<td>25</td>
<td>92.4</td>
</tr>
<tr>
<td>30</td>
<td>93.0</td>
</tr>
<tr>
<td>40</td>
<td>93.6</td>
</tr>
<tr>
<td>50</td>
<td>93.6</td>
</tr>
<tr>
<td>60</td>
<td>93.6</td>
</tr>
<tr>
<td>75</td>
<td>95.0</td>
</tr>
</tbody>
</table>
C. Motors, including premium efficiency motors shall be manufactured by General Electric Baldor, Louis Allis (Spartan), Marathon, Reliance Electric, Westinghouse, or equivalent having equal efficiencies.

D. Special motors as may be necessary by the application and as specified herein and on the drawings include C-FACE, totally enclosed fan cooled (TEFC), explosion-proof, etc., shall be provided as required and shall be furnished manufacturer’s premium efficiency rating for 5 HP and larger.

E. Each motor shall be of the horsepower as specified and suitable for use at an altitude of 7200 feet. All motors shall have grease lubricated sealed ball bearings. Motors larger than 1 HP shall have a standard grease fitting "Zerk" and a separate grease relief tapping. Motors shall be factory lubricated. Motors shall be commercially dynamically balanced and tested at the factory before shipment and shall be selected for quiet operation. The Contractor shall line up motors and drives and place motors and equipment on foundations ready for operation.

F. Unless indicated otherwise, motors shall be NEMA design B with a service factor of 1.15 with 40°C rise and total temperature rise of 65°C ambient and when powered from the system voltage feeding the motor. TEFC motors shall have a service factor of 1.00 with total temperature rise of 65°C in the above conditions. Motors located in areas exceeding 40°C in the ambient shall be factory rated for the ambient temperature of the motor environment. Single phase motors shall generally be NEMA Type N split phase induction motors with built-in thermal protectors. Unless otherwise specified for a particular application use electric motors with the following requirements.

1. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC).
2. Polyphase Motors: NEMA Design B, Squirrel cage, induction type. Each two speed motor shall have two separate windings.
3. Rating: Continuous duty at 100% capacity in an ambient temperature of 40°C.

G. If the Division 22 Contractor proposes to furnish motors varying in horsepower and/or characteristics from those specified, he shall first submit his request for the change and shall then coordinate the change with Division 26 and shall pay all additional charges in connection with the change.

H. The Contractor shall ensure proper coordination between motors and variable frequency drives. See Section 22 0550 also.

2.4 ELECTRICAL WIRING AND CONTROL EQUIPMENT

A. All wiring and conduit shall be furnished and installed as scheduled in Section 22 0549, Plumbing and Electrical Installation Coordination, unless otherwise noted or directed.

B. The Contractor shall coordinate completely with all trades and Sub-Contractors as required to ensure that all necessary components of control work are included and fully understood. No additional cost shall accrue to the Owner as a result of lack of such coordination.

C. The piping system may be bonded to the electrical ground bus at the electrical service equipment, but shall not under any circumstances be used as the main grounding electrode for the electrical service.
2.5 **PAINTING**

A. All finish painting of plumbing systems and equipment will be under "Painting," unless equipment is hereinafter specified to be provided with factory applied finish coats.

B. All equipment shall be provided with factory applied prime finish, unless otherwise specified.

C. Touch-Up: If the factory finish on any equipment is damaged in shipment or during construction of the building, the equipment shall be refinished.

2.6 **COUPLING GUARDS**

A. All flexibly connected pumps shall be provided with protective steel coupling guards.

2.7 **IDENTIFICATION OF VALVES**

A. Each valve shall be provided with a stamped metal tag secured to the valve. Tag shall indicate the valve number, the service and function of each valve. The Contractor shall furnish two sets of prints of drawings showing floor plan for each floor with all valves accurately located and labeled. Submitted drawings shall be neat and easily readable. In addition, the Contractor shall provide a valve chart, typed neatly on 8-1/2" x 11" sheets, listing the number, size, location, function, normal operating position, on each valve installed under Division 22. Valves shall be listed by system, i.e. domestic cold water, hot water, chilled water etc. Tags shall be stamped brass 1-1/2" diameter, and secured to valves by heavy copper figure eight hooks, braided stainless steel wire anchor, or other approved means.

B. Division 22 valve tags shall be coordinated with Division 21 and Division 23 valve tags for coordinated format between each Division.

C. Valve tags shall be coordinated with existing facility valve tags and Contractor shall obtain a copy of existing facility valve chart and provide updated valve chart to the Owner's Representative.

2.8 **PIPING SYSTEM IDENTIFICATION**

A. Means of Identification: All piping and duct systems shall be identified by each of the means described below. The Contractor shall provide shop drawing submittal data for proposed labeling system materials and manufacturer's recommended installation procedures.

B. Piping Systems shall be identified by means of an identifying legend on color coded background appropriately worded to indicate the "service" name of the pipe as shown on the drawings. Color coded banding shall also be provided. Additionally, an arrow shall be included to indicate the direction of flow through the pipe.

C. Locations of Piping System Identification: The identifying legends and directional arrows described in the paragraphs preceding shall be located at the following points on each piping system:

- Adjacent to each valve in piping system.
- At every point of entry and exit where piping passes through a wall.
- On each pipe riser and junction.
- At a maximum interval of 20 feet on pipe lines exposed and concealed above accessible ceilings.
- Adjacent to all special fittings (regulating valves, etc.) in piping systems.
- At every access door.
D. Piping identification shall meet the standards of the Federal Occupational Safety Health Act (OSHA) which refers to the ANSI Standard A13.1. The following standardized color code scheme shall be used:

- Yellow - Hazardous Materials
- Green - Liquid Materials of Inherently Low Hazard
- Blue - Gaseous Materials of Inherently Low Hazard
- Red - Fire Protection Materials

E. The size of letter and length of color field shall conform to the ANSI standard and shall be as follows:

<table>
<thead>
<tr>
<th>Outside Diameter of Pipe or Covering</th>
<th>Length of Color Field</th>
<th>Size of Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 1-1/4"</td>
<td>8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>1-1/2" to 2"</td>
<td>8"</td>
<td>3/4"</td>
</tr>
<tr>
<td>2-1/2" to 6"</td>
<td>12"</td>
<td>1-1/4"</td>
</tr>
<tr>
<td>8" to 10"</td>
<td>24"</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>Over 10"</td>
<td>32"</td>
<td>3-1/2"</td>
</tr>
</tbody>
</table>

F. All pipe labels exposed within mechanical equipment spaces shall be semi-rigid plastic identification markers. Each label shall have appropriately color-coded background with printed legend. Directional flow arrows shall be included on label. Labels shall "snap-on" around pipe without the requirement for adhesive or bonding of piping sizes 3/4" through 5". Labels for piping 6" and larger shall be furnished with spring attachment at each end of label. Labels shall be "SETMARK" Type SNA, 3/4" through 5" size and Type STR, 6" and larger, as manufactured by Seton Name Plate Corporation, Brady, or equivalent.

G. All pipe labels except pipe labels located exposed within the mechanical equipment spaces shall be vinyl material with permanent adhesive for application to clear dry pipe and/or insulation jacketing. Each label shall have appropriate color-coded background with printed legend. Direction arrows shall be placed next to label to indicate flow direction. Color and size of arrows shall correspond to that of label. Pressure sensitive pipe tape matching the background color of the label shall be placed over each end of the label and completely around the pipe.

H. Attach pipe markers to lower quarter of the pipe on horizontal runs and on the centerline of vertical piping where view is not obstructed. Flow indicator arrow shall point away from pipe marker.

I. Provide the following labels, with ANSI/OSHA color for all piping systems as shown on the drawings and as listed below:

<table>
<thead>
<tr>
<th>Service/Legend</th>
<th>Letter Color</th>
<th>Background Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Cold Water</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Black</td>
<td>Yellow</td>
</tr>
<tr>
<td>Domestic Hot Water Return</td>
<td>Black</td>
<td>Yellow</td>
</tr>
<tr>
<td>Soft Cold Water</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>Soft Hot Water</td>
<td>Black</td>
<td>Yellow</td>
</tr>
<tr>
<td>Industrial (non potable) Cold Water</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>Reverse Osmosis</td>
<td>White</td>
<td>Green</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>White</td>
<td>Blue</td>
</tr>
</tbody>
</table>
Roof Drain White Green
Sanitary Sewer White Green
Storm Sewer White Green

2.9 IDENTIFICATION OF CONTROL SYSTEM DEVICES

A. All automatic controls, control panels, zone valves, pressure electric, electric pressure switches, relays and starters shall be clearly tagged and identified. Wording shall be identical to that on the control diagram in the contract drawings.

2.10 UNDERGROUND PIPING SYSTEM IDENTIFICATION

A. Bury a continuous, preprinted, bright colored, plastic ribbon cable marker with each underground pipe regardless of whether encased. Locate directly over buried pipe, 6" to 8" below finished grade. Marker tape used in conjunction with buried plastic piping systems shall be special detector type. Marker tape used in conjunction with buried plastic piping systems shall be special detection type.

2.11 EQUIPMENT TAGS

A. Furnish and install equipment identification tags for all items of PLUMBING equipment furnished and installed under Division 22. Equipment tags shall be a minimum of 3/32" thick laminated phenolic plastic.

2.12 ACCESS DOORS

A. Provide all access doors required for access to valves, controls, or other items for which access is required for either operation or servicing. All costs incurred through failure to perform this function as the proper sequence of this work shall be borne by the Contractor. The type of access door shall be as required by the room finish schedule. Acoustical tile access doors shall be equal to Krueger Style B, Style A for acoustical plaster, Style C-CE for sidewall drywall or plaster construction.

B. Access doors shall be not less than 24" x 24" in size except that larger panels shall be furnished where required, and panels in tile or other similar patterned ceilings shall have dimensions corresponding to the tile or pattern module.

C. Where access doors are installed in walls required to have a specific fire rating, the access door installed shall be a fire rated access door with UL label, as manufactured by Milcor or equivalent. Access door in 1-hour construction shall be Class C and access doors in 2-hour construction shall be Class B.

PART 3 - EXECUTION

3.1 COOPERATION WITH OTHER TRADES

A. The Contractor shall refer to other parts of these specifications covering the work of other trades which must be carried on in conjunction with the plumbing work so that the construction operations can proceed without harm to the Owner from interference, delay, or absence of coordination. The Contractor shall be responsible for the size and accuracy of all openings.

3.2 DRAWINGS

A. The plumbing drawings show the general arrangement of all piping, fixtures, equipment, etc., and shall be followed as closely as actual building construction and work of other trades will permit. Whenever
discrepancies occur between plans and specifications, the most stringent shall govern. All Contract Documents, including but not limited to Division 21 Fire Suppression, Division 23 HVAC, and Division 26 Electrical shall be considered as part of the work insofar as this information furnishes the Contractor with details relating to design and construction of the building. Architectural and Structural drawings shall take precedence over the plumbing, HVAC and fire suppression drawings. Install plumbing fixtures, floor drains, floor sinks, roof drains, etc. in locations as indicated on Architectural drawings. Because of the small scale of the plumbing, HVAC and fire suppression drawings, it is not possible to indicate all offsets, fittings and accessories which may be required. The Contractor shall investigate the structural and finish conditions affecting the work and shall arrange his work accordingly, providing such fittings, valves, and accessories as may be required to meet such conditions. Should conditions necessitate a rearrangement of piping, such departures and the reasons therefore shall be submitted by the Contractor for review in the form of detailed drawings showing the proposed changes. No such changes shall be made without the prior written approval. All changes shall be marked on the set of record drawings by the Contractor.

B. Should any doubt or question arise in respect to the true meaning of the drawings or specifications, the question shall be submitted in writing.

C. Installation of all plumbing equipment and piping systems shall be arranged to provide all clearances required for equipment operation, service, and maintenance, including minimum clearances required by applicable codes, manufacturer's installation instructions and as necessary for proper clearance in front of all electrical panels as defined by the National Electric Code (NEC). Piping systems shall not be routed through or above electrical equipment room or electrical equipment space designed within equipment rooms.

D. The Contractor's attention is directed to the unique architectural design features and consideration associated with this facility which will require significantly greater levels of coordination and cooperation for the work furnished and installed under Division 22 with the associated architectural, structural, and electrical work than is normally necessary for a more typical facility.

E. The installation of all concealed plumbing systems shall be carefully arranged to fit within the available space without interference with adjacent structural and electrical systems. The Contractor shall make all necessary provisions for penetrations of piping, including sleeves and blockouts in structural systems. The exact location of all exposed plumbing systems; access doors; piping exposed within finished areas; and other equipment and devices as applicable, shall be coordinated with the Architect, who shall have final authority for the acceptance of the work as it specifically relates to the architectural aesthetic design requirements for the facility. In no instance shall the building vapor barrier system be penetrated by the plumbing system installation without written approval.

3.3 FIELD MEASUREMENTS

A. The Contractor shall verify the dimensions and conditions governing his work at the building. No extra compensation shall be claimed or allowed on account of differences between actual dimensions, including dimensions of equipment, fixtures and materials furnished, and those indicated on the drawings. Contractor shall examine adjoining work, on which his work is dependent for perfect efficiency, and shall report any work which must be corrected. Coordination of all plumbing work within the building will be the direct responsibility of the Contractor. Review of submittal data in accordance with paragraph "Submittals" shall in no manner relieve the Contractor of responsibility for the proper installation of the plumbing work within the available space. Installation of equipment and systems within the building space shall be carefully coordinated by the Contractor with all building trades. Each contractor shall so harmonize his work with that of the several other trades that it may be installed in the most direct and workmanlike manner without hindering or handicapping the other trades. Piping interferences shall be handled by giving precedence to pipe lines which require a stated grade for proper operation. Sewer lines shall take precedence over water
lines in determination of elevations. In all cases, lines requiring a stated grade for their proper operation shall have precedence over electrical conduit and ductwork. Installation of plumbing, HVAC and fire suppression equipment within the ceiling cavity shall be in the following order of priority: plumbing waste lines; roof drains; supply, return, outside air, makeup, and exhaust ductwork; fire sprinkler mains; fire sprinkler branch piping and sprinkler runouts; domestic hot and cold water; control piping, wiring and conduit; miscellaneous special piping systems.

3.4 EQUIPMENT SUPPORT

A. Contractor shall provide support for equipment to the building structure. Contractor shall furnish all necessary structures, inserts, sleeves, and hanging devices for installation of mechanical and plumbing equipment, ductwork and piping, etc. Contractor shall completely coordinate installation of such devices with all trades and Sub-Contractors. Contractor must further verify that the devices and supports are adequate as intended and do not overload the building’s structural components in any way.

3.5 PROTECTION OF MATERIALS AND EQUIPMENT

A. The Contractor shall be responsible for the protection of all work, materials and equipment furnished and installed under this section of the specifications, whether incorporated in the building or not.

B. Plumbing equipment and materials, including piping, valves and fittings, etc., shall be protected from damage and contamination. Equipment and materials shall not be stored outside and exposed to weather and ambient conditions without appropriate protection measures and without the approval of the Architect. Equipment and materials shall be delivered to the jobsite and maintained while on the jobsite with all openings, controls and control panels covered with caps, with heavy duty polyethylene wrap or other proper means. Equipment and materials where stored within the building shall be protected at all times from construction damage and contamination from dust, dirt, debris, and especially during fireproofing, painting and gypboard sanding and finishing. Unprotected equipment and piping will require special field cleaning by the Contractor prior to acceptance by the Architect.

C. The Contractor shall provide protection for all work where necessary and shall be responsible for all damage done to property, equipment and materials. Storage of materials within the building shall be approved by the Architect prior to such storage.

D. Pipe openings shall be closed with caps or plugs, or covered to prevent lodgment of dirt or trash during the course of installation. At the completion of the plumbing work, fixtures and materials shall be cleaned and polished thoroughly and delivered in a condition satisfactory to the Architect.

3.6 TRENCHING AND BACKFILLING

A. All excavation, trenching and backfilling required for the plumbing installation shall be provided by this Contractor.

3.7 MANUFACTURER’S INSTRUCTIONS

A. All equipment shall be installed in strict accordance with recommendations of the manufacturer. If such recommendations conflict with plans and specifications, the Contractor shall report such conflicts to the Architect, who shall make such compromises as he deems necessary and desirable.
3.8 PRE-PURCHASED AND OWNER FURNISHED EQUIPMENT

A. Some equipment has either been prepurchased or is in the process of being prepurchased by the Owner. [It has been necessary to take this approach in order to meet the construction deadlines of the project.] The prepurchased equipment will be indicated on the drawings and specifications. See Section 22 0502, Installation of Owner-Supplied Equipment, for additional requirements.

B. The Contractors shall be responsible for the following in regards to the prepurchased and Owner furnished equipment.

1. Coordinate with Owner’s Representative in order to follow and expedite the delivery of each piece of equipment to assure the equipment delivery stays on schedule. Let the Owner know of any problems or delays.
2. Receive, unload, uncrate, and install each item of prepurchased and Owner furnished equipment.
3. Confirm that each item has been received complete and as specified. Notify the Owner and the manufacturer’s representative in writing of any deficiencies or damage.
4. Coordinate with the manufacturer’s representative on start-up and provide factory personnel to assist Contractors’ start-up personnel as required [and provide all necessary Contractor and sub-contractor personnel to assist Owner’s operating personnel and/or manufacturer’s service personnel in start-up and commissioning.
5. Any items that are not listed as pre-purchased shall be provided by the Contractor as part of his work.

C. The Contractor shall not be responsible for the following in regards to pre-purchased and Owner furnished equipment:

1. Payment.
2. Equipment Warranty.
4. Operating and maintenance manuals.
5. Equipment Performance.

D. Submittals, installation instructions, and warranty provisions for prepurchased equipment will be furnished to the Contractor by the Owner.

3.9 CONCRETE BASES AND HOUSEKEEPING PADS

A. Concrete bases and housekeeping pads shall be installed under all pieces of plumbing equipment unless specifically deleted by the specifications or drawings.

B. Contractor shall be responsible for the accurate dimensions of all pads and bases and shall furnish and install all vibration isolators, anchor bolts, etc.

C. Contractor shall provide concrete housekeeping pad foundations for all floor mounted equipment installed under this section unless otherwise shown on the drawings. All concrete bases and housekeeping pads shall conform to the requirements specified under Division 3, Concrete, portions of these specifications. Pad foundations shall be 4" high minimum, unless otherwise indicated on the drawings. Chamfer edges shall be 1". Faces shall be free of voids and rubbed smooth with carborundum block after stripping forms. Tops shall be level. Provide dowel rods in floor for lateral stability and anchorages.

D. Equipment anchor bolts shall be set in a galvanized pipe or sheet metal sleeves 1" larger than bolt diameter. Anchor bolts shall be high strength steel J shape. Anchor bolt design shall be arranged and paid for by the
Machinery bases, bed plates, sole plates, or vibration isolation units shall be carefully aligned, shimmed, leveled, then grouted in place with commercial non-shrink grout. When a flexible coupling is employed as a part of the drive train, the coupling shall be aligned before the machinery base is grouted.

3.10 EQUIPMENT FURNISHED UNDER OTHER SECTIONS OF THESE SPECIFICATIONS

A. Certain items of mechanical equipment as listed on the drawings and/or specifications will be furnished under other sections of this specification for mechanical rough-in and connection under Division 22, including plumbing, domestic water and waste, cooling water, compressed air, etc. All required plumbing services, including connection of such services to equipment shall be provided under Division 22.

3.11 ALIGNMENT OF FLEXIBLE COUPLINGS

A. Flexible couplings between motors and driven equipment shall be aligned by the qualified service technician after the equipment is installed and ready for operation. Proper aligning shall be provided within manufacturer’s maximum alignment tolerance at equipment operating conditions and temperature. Alignment shall follow unit manufacturer’s written procedures using approved dial indication methods for parallel and angular alignment. The Contractor shall provide written certification that each device has been so aligned.

3.12 LUBRICATION

A. The Contractor shall provide all oil for the operation of all equipment until acceptance. The Contractor shall be held responsible for all damage to bearings while the equipment is being operated by him up to the date of acceptance of the equipment. The Contractor shall protect all bearings and shafts during installation and shall thoroughly grease the steel shafts to prevent corrosion. Bearings for items of plumbing equipment shall be marked at each bearing location as to whether the bearing is a sealed type or relubricable type unit.

3.13 PRESSURE RELIEF DEVICES

A. Pressure relief devices and fusible plugs shall be installed with piping to a safe location in accordance with Code requirements.

3.14 TESTS

A. Tests shall be conducted in the presence of the designated and authorized Owner’s Representative. The Contractor shall notify the Architect a minimum of one week in advance of scheduled tests. Requirements for testing are specified under the sections covering the various systems. The Contractor shall furnish all necessary equipment, materials, and labor to perform the required tests.

3.15 INSTALLATION CHECK

A. An experienced, competent, and authorized representative of the equipment listed below shall visit the site of the work and inspect, check, adjust if necessary, and approve the equipment installation. In each case, the equipment supplier’s representative shall be present when the equipment is placed in operation. The equipment supplier’s representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is approved and accepted.

B. Each equipment supplier’s representative shall furnish a written report certifying that the equipment (1) has
been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it has operated satisfactorily.

3.16 OPERATION AND MAINTENANCE INSTRUCTIONS

A. The Contractor shall furnish complete operating and maintenance instructions covering all units of plumbing equipment fixtures, faucets, etc., herein specified together with parts lists. Equipment spare parts shall include all components requiring service, including motors, bearings, shafts, etc. A "Lubrication Chart" framed under Plexiglass shall be provided listing all types of oil to be used for each piece of equipment and the recommended frequency of lubrication. This chart shall be hung on the wall of the equipment room.

B. See Division 1 for additional requirements concerning manuals, manual distribution, and maintenance materials.

C. Operating and maintenance manuals as required herein shall be submitted for review and distribution to the Owner not less than two (2) weeks prior to the date scheduled for the Contractor to provide Operating and Maintenance Instructions to the Owner as specified herein.

D. Upon completion of all work and all tests, Contractor shall furnish the necessary skilled labor and helpers for operating the plumbing systems and equipment for a period of five (5) days of eight (8) hours each. During this period, the Contractor shall instruct the Owner or his representative fully in the operations, adjustment and maintenance of all equipment furnished. Contractor shall provide at least two weeks notice in advance of this period, with a written schedule of each training session, the subject of the session, the Contractors' representatives who plan to attend the session, and the time for each session.

E. Film the instruction and training sessions submit two copies of the DVD.

F. Operational test shall be conducted by the Contractor with the assistance of the equipment manufacturer's representative or service technician. Test shall be conducted in the presence of the designated and authorized Owner’s Representative.

3.17 CERTIFICATIONS

A. Before receiving final payment, the Contractor shall certify in writing that all equipment furnished and all work done is in compliance with the contract documents and all applicable codes. Submit certifications and acceptance certificates, including proof of delivery of O&M manuals, spare parts required, and equipment warranties which shall be bound with O&M manuals.

3.18 CONSTRUCTION PHASING AND SCHEDULE

A. All work furnished and installed under Division 22 of this Specification shall be provided in accordance with the project schedule and phase requirements [as described on the Architectural Drawings and Specifications.

3.19 SITE VISITS AND OBSERVATION OF CONSTRUCTION

A. The design professional shall make periodic visits to the project site at various stages of construction in order to observe the progress and quality of various aspects of the Contractor's work, in order to determine in general if such work is proceeding in accordance with the Contract Documents. This observation, however, shall in no way release the Contractor from his complete responsibility to supervise, direct, and control all construction work and activities. The design team has no authority over, or a responsibility to means,
methods, techniques, sequences, or procedures of construction provided by the Contractor or for safety precautions and programs, or for failure by the Contractor to comply with all law, regulations, and codes.

B. Prior to the "Final" observation visit, the attached "Final Observation Checklist" shall be completed by the Contractor. Any non-applicable items shall be marked "N/A." The completed form shall be submitted, indicating that all necessary items are complete and requesting a final observation within 10 days. The Contractor shall be notified of any uncompleted items within seven (7) days. A resubmittal of the form and a new final observation request by the Contractor is required if the form is returned and noted as incomplete.

END OF SECTION
CONTRACTOR’S MECHANICAL & PLUMBING CHECK LIST
(ALL APPLICABLE ITEMS MUST BE COMPLETED PRIOR TO FINAL OBSERVATION)

In advance of requesting a final mechanical observation for installed mechanical systems, please check all items that have been completed. For all items not applicable to this project mark N/A.

HVAC/PIPING

1. All plumbing fixtures are set, sealed and cleaned.
2. All domestic pipe systems are insulated.
3. All pipe systems are identified with specified labels and directional arrows.
4. Floor sinks and drain grates are cleaned and debris removed.
5. Valve tags are installed.
6. Special equipment (water softeners, water heaters, piping systems, etc.) have been checked and put into service.
7. Medical gas systems have been checked and certified.
8. Special piping systems have been cleaned and pressure tested.
9. Limestone chips have been installed in acid dilution sumps.
10. Plumbing/piping connections have been completed to Owner furnished equipment and equipment furnished by other Contractors/Sub-Contractors.
11. Exterior wall hydrants have been cleaned.
12. Concrete collars have been installed at clean-out to grade, valve box, or other specified plumbing items.
13. Drains and relief lines from plumbing equipment have been installed and secured in a proper manner.
14. All plumbing equipment and areas of equipment have been cleaned and debris removed.
15. All plumbing equipment required by the Specifications has been identified and/or numbered.
16. Domestic water systems sterilization has been completed.
17. Strainers/suction diffusers have been cleaned.
18. Backflow preventers have been tested.
19. Air has been vented from all systems.
20. Ethylene glycol system has been charged with correct mixture and tested.
21. Water systems have been cleaned (X) and pressure tested (P).

<table>
<thead>
<tr>
<th>Non-potable Water</th>
<th>Domestic Hot Water</th>
<th>Domestic Cold Water</th>
<th>Acid Waste and Vent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanitary Sewer & Vent</td>
<td></td>
<td></td>
<td>Roof and Overflow Drains</td>
</tr>
<tr>
<td>Other (list)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22. PRV's have been adjusted (water, gasses).

PLUMBING EQUIPMENT

1. All pump shafts and couplings have been aligned.
2. Boilers and domestic water heaters have been fired and tested.
3. All plumbing equipment has been lubricated.
4. Plumbing equipment has been labeled in accordance with the specifications.
5. "HAZARDOUS AREA" signs installed where applicable.
6. Variable frequency drives have been tested by the manufacturer's representative and certified to be in compliance with all of the specified requirements.

GENERAL ITEMS

The following specified items have been submitted:

1. Record drawings (to be submitted prior to final payment to the Contractor).
2. Operation and maintenance manuals.
3. Manufacturer's representative installation check and certification submitted (see list of equipment, Section 22 0500).
4. Test kits furnished to Owner.
5. Control schematics and sequence of operation.
6. Plumbing equipment and lubrication, valve, charts have been provided to Owner’s Representative.

END CHECKLIST
DIVISION 22 SUBSTITUTION REQUEST FORM (SRF)

TO: BRIDGERS & PAXTON CONSULTING ENGINEERS, INC.

PROJECT:

We hereby submit for your consideration the following product instead of the specified item for the above project:

Section:
Page:
Paragraph/Line:
Specified Item:
Proposed Substitution:

Attach complete product description, drawings, photographs, performance and test data, and other information necessary for evaluation. Identify specific Model Numbers, finishes, options, etc.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Will changes be required to building design in order to properly install proposed substitutions?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>If YES, explain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Will the undersigned pay for changes to the building design, including engineering and drawing costs, caused by requested substitutions?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>3. List differences between proposed substitutions and specified item.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Item</td>
<td>Proposed Substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Does substitution affect Drawing dimensions?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>5. What affect does substitution have on other trades?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Does the manufacturer's warranty for proposed substitution differ from that specified?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>If YES, explain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Will substitution affect progress schedule?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>If YES, explain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Will maintenance and service parts be locally available for substitution?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
<tr>
<td>If YES, explain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Does proposed product contain asbestos in any form?</td>
<td>YES ☐</td>
<td>NO ☐</td>
</tr>
</tbody>
</table>

SUBMITTED BY:
Firm:
Date:
Address:
Signature:
Telephone:

For Engineer's Use Only

Accepted
Not Accepted:
Received too Late:
By:
Date:
Remarks:

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

COMMON WORK REQUIREMENTS
220500 - 21
LICENSE AGREEMENT FOR CADD DATABASE OR BIM MODEL

PROJECT: ___

LICENSE GRANT: Contractor is granted use of the CADD Database or BIM Model (Database/Model) for the indicated project for the specific purpose of preparing submittal documents for this Project. No other use of the Database/Model is granted. Title to the Database/Model is not transferred to the Contractor. The Database/Model may be of value to the Contractor in preparing submittals, but use of the model does not relieve the contractor of the requirement to verify measurements in the field.

COPYING RESTRICTIONS: Contractor may copy the Database/Model in whole or in part, but only for backup and archival purposes or for use by the Contractor’s Subcontractors. Contractor agrees to ensure that any entities that receive the Database/Model from Contractor, either in whole or in part, comply with the terms and conditions of this agreement. Contractor shall safeguard the Database/Model from falling into the hands of parties other than Subcontractors with a legitimate need for it.

WARRANTY: Bridgers & Paxton (B&P) offers this Database/Model without warranty and specifically without express or implied warranty of fitness. If Contractor chooses to use the Database/Model, then he does so at his own risk and without any liability or risk to B&P.

INDEMNITY: Contractor shall to the fullest extent permitted by law, defend, indemnify and hold harmless the Owner, Architect, B&P, their employees and agents from all claims, damages, losses, and attorney fees arising out of or resulting from the use of the Database/Model.

ACKNOWLEDGMENT: Contractor acknowledges that (s)he has read this Agreement, understands it, and agrees to be bound by its terms and conditions.

CONTRACTOR'S REPRESENTATIVE

Signature: ________________________________ Company Name: ________________________________

Name: ________________________________ Address 1: ________________________________

Title: ________________________________ Address 2: ________________________________

Date: ________________________________

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

COMMON WORK REQUIREMENTS

220500 - 22
SECTION 220502 - INSTALLATION OF OWNER-SUPPLIED EQUIPMENT FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 SCOPE OF WORK

A. Provide the following services:

1. General: Work directly with the equipment suppliers. Suppliers shall deliver equipment to a location as designated by Contractor. Coordinate directly with supplier for delivery, rigging requirements, installation requirements, start-up and commissioning. In general, supplier is responsible for delivering the equipment to the site, providing installation instructions, and verifying proper installation. In general the Contractor is responsible for all other work, including unloading equipment, storing equipment until ready for installation, installing the equipment. Start-up and operational testing will require a joint effort by Suppliers and Contractor. Contractor shall relieve the Owner of all responsibilities for coordination with the Suppliers and Shippers.

2. Delivery: Coordinate with suppliers regarding delivery locations and times. Receive, unload, inspect, and immediately report any deficiencies or damage directly to the supplier or shipper, with a copy to the Owner. Resolve such deficiencies or damage directly with the supplier and shipper. Once Contractor accepts delivery, Contractor shall then become fully responsible for equipment.

3. Storage: Where temporary storage is required, store equipment indoors in a heated, dry environment in compliance with manufacturer’s recommendations. If Contractor wishes to store equipment outdoors or in unheated warehouses, request permission in advance from the Owner and Suppliers, comply with manufacturers’ recommendations, and take all measures necessary to ensure that manufacturers’ warranties remain in effect.

4. Installation: Rig equipment into place and install in accordance with manufacturer’s recommendations. Take care not to damage building during rigging. Repair any damage to the Owner’s satisfaction. Provide foundations, piping, ductwork, power, controls, etc., as required for a complete installation.

5. Start-up & Operational Testing: Coordinate directly with supplier for start-up assistance in sufficient time to support project schedule. Provide all start-up assistance not specifically assigned to supplier. Coordinate the efforts of supplier’s start-up personnel; assist in demonstrating proper capacity, operation and control; and deliver start-up logs to the Owner.

1.3 SCHEDULE

A. See Division 1 for equipment delivery dates.

PART 2 - PRODUCTS

2.1 OWNER-SUPPLIED EQUIPMENT

A. See Section "Owner-Supplied Equipment," for specifications and shop drawings of owner-supplied equipment.
PART 3 - EXECUTION

See Division 23, Section 23 0502, for applicable requirements.

END OF SECTION
SECTION 220503 - TRENCHING AND BACKFILLING FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and the General Requirements.

1.2 SCOPE OF WORK

A. The work in this section includes the furnishing of all labor, materials, equipment, transportation, hauling and services required in connection with the excavation, backfilling, compaction, grading and removal of earth from the site required for the installation of the mechanical work specified herein under Division 22.

B. The Contractor shall provide the services of a qualified underground locator to field locate and mark all existing buried utility lines, public and private, piping, conduits, etc., within the required construction area prior to the start of any trenching or excavation work.

1.3 SAFETY REGULATIONS

A. All work performed under this Section shall conform to the requirements of the General Conditions, Supplementary Conditions and Safety Requirements for this type of work.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

3.1 TRENCHING AND BACKFILLING

A. General Excavation: The Contractor shall perform all excavation of every description and of whatever substances encountered, to the depths indicated on the drawings or as otherwise specified. During excavation, material suitable for backfilling shall be piled in an orderly manner a sufficient distance from the banks of the trench to avoid overloading and to prevent slides or cave-ins. All excavated material not required or suitable for backfill shall be removed and wasted. Berming and grading shall be done as may be necessary to prevent surface water from flowing into trenches or other excavations, and any water accumulating therein shall be removed by pumping or by other approved methods. Sheet and shoring shall be done as required for the protection of the work and for the safety of personnel.

B. Trench Excavation: Trenches shall be of adequate width for the proper laying of the pipe, and the banks shall be as nearly vertical as practicable and safe for workmen. The bottom of the trenches shall be accurately graded and bedded to provide uniform bearing and support for each section of the pipe at every point along its entire length. Bell holes and depressions for joints shall be dug after the trench bottom has been graded, and bedded in order that the pipe rests upon the prepared bottom for as nearly its full length as practicable. Care shall be taken not to excavate below the depths indicated. Where rock excavation is required, the rock shall be excavated to a minimum overdepth of 4 inches below the trench depths indicated on the drawings or specified. Overdepths in the rock and common excavation shall be backfilled with coarse sand, fine gravel, or otherwise suitable material. Whenever wet or otherwise unstable soil that is incapable of properly supporting the pipe is encountered in the
bottom of the trench, such soil shall be removed to the depth required and the trench backfilled to the proper grade with coarse sand, fine gravel, or other suitable materials, as hereinafter specified.

C. The Contractor shall move trucks and equipment on prescribed roads and keep the roads free from mud, dirt and spillage.

D. If additional material is needed for fill on the project, it shall be furnished by the Contractor.

E. Bracing and Bulkheading: In all excavation work the Contractor shall provide necessary underpinning, bracing, or bulkheading to safeguard the work, the present structures, workmen, the public, and the property, and shall assume all responsibility in connection therewith.

F. Backfilling: The trenches shall not be backfilled until all required pressure tests are performed and until the utilities as installed conform to the requirements specified. The trenches shall be carefully backfilled with materials approved for backfilling; free from large clods of earth or stones. The entire depth of trench shall be backfilled in layers, and each layer shall be spread evenly, wetted to optimum moisture and thoroughly mixed to uniform consistency and compacted to the required maximum density obtainable as the same soil, as determined by ASTM D698.

G. All imported fill required under this section will be furnished by the Contractor. Imported fill will be base course material approved for use by the State Highway Department.

H. Fill material shall be free from trash, lumber or any type of debris which may be detrimental to producing the required density in the fill.

I. The earth beneath all sidewalks and concrete slabs shall be backfilled and compacted to at least 8" below any gravel or sub-base material before the placement of gravel or other base material and shall be coordinated with requirements contained within Division 33.

J. Piping below roadways or service drives buried at a depth of less than 48" shall be protected with a reinforced concrete slab above the piping, either at grade or below the final grade as directed by the Architect.

K. All piping not encased in concrete shall be bedded in sand or fine gravel, without rocks or other foreign material. Bedding material shall be placed around the pipe in accordance with manufacturer’s recommendations. The bedding material shall be distributed around pipe to assure full consolidation.

L. In grass and planted areas, the Contractor shall backfill his excavation to approximately 8" below finished grade. Contractor shall coordinate backfill requirements contained in Division 33.

M. The Contractor shall protect from damage all existing underground utilities indicated on the Contract Drawings. Any damage to such existing utilities shall be repaired by the Contractor without additional costs to the Owner.

N. Provide density test for trench, backfill in accordance with Division 33 requirements.

END OF SECTION
SECTION 220504 - PIPE AND PIPE FITTINGS FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

1.3 SUBMITTAL DATA

A. Contractor shall furnish complete submittal data for all piping materials, including manufacturer’s specifications, certifications, class, type and schedule. Submittal data shall additionally be furnished for pipe hangers and supports, seismic restraints, pipe sleeves including sealing and fire safing materials and installation.

PART 2 - PRODUCTS

See Division 23, Section 23 0504 – Pipe and Pipe Fittings, for applicable requirements.

PART 3 - EXECUTION

See Division 23, Section 23 0504 – Pipe and Pipe Fittings, for applicable requirements.

END OF SECTION
SECTION 220505 - PIPING SPECIALTIES FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Contractor shall furnish and install all piping specialties necessary for satisfactory operation of the systems. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.
2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.
B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.
C. Section 22 0523, Valves for Plumbing.
D. Section 22 0700, Plumbing Insulation.
E. Section 22 0549, Plumbing and Electrical Installation Coordination.

1.3 SUBMITTAL DATA

A. The Contractor shall furnish complete submittal data for all piping specialties including manufacturer’s specifications, performance characteristics, ratings, installation instructions, certifications and approvals of listing agencies, wiring diagrams, and selection analysis.

PART 2 - PRODUCTS

See Division 23, Section 23 0505, Piping Specialties.

PART 3 - EXECUTION

See Division 23, Section 23 0505, Piping Specialties.

END OF SECTION
SECTION 220523 - VALVES FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. All Valves shall conform with current applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

B. All Valves shall meet the current MSS Specifications covering Bronze & Iron Valves. MSS-SP-80, MSS-SP-70, MSS-SP71, MSS-SP-85 where applicable.

C. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.
 1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.
 2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Division 21 for Fire Suppression System.

D. Division 22 for Plumbing.

1.3 SCOPE

A. Contractor shall furnish and install all valves and accessories necessary for satisfactory operation of the systems.

1.4 VALVE REQUIREMENTS

A. All Gate, Globe, Check, Ball valves shall be manufactured by Milwaukee, Nibco, Apollo, Stockham, Powell, Crane, Grinnell, or equivalent.

B. All lubricated plug valves shall be as manufactured by Rockwell, Walworth, Homestead, or equivalent.

C. Ball valves shall be utilized in lieu of gate valves and globe valves for all plumbing systems for sizes 2" and smaller.

D. All valves of the same type shall be products of a single manufacturer unless otherwise approved by Owner's Representative.

E. Provide gate and globe valves with packing that can be replaced with the valve under full working pressure.
PART 2 - PRODUCTS

See Division 23, Section 23 0523 - Valves, for applicable requirements.

PART 3 - EXECUTION

See Division 23, Section 23 0523 - Valves, for applicable requirements.

END OF SECTION
SECTION 22 0548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with the applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

1.2 RELATED SECTIONS

A. Section 21 0500, Common Works Requirements for Fire Suppression.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Section 22 0551, Instrumentation and Controls for Plumbing.

D. Section 22 1100, Domestic Water Piping.

E. Section 22 1316, Sanitary Waste and Vent Piping.

F. Section 22 1400, Facility Roof and Area Drainage.

G. Section 22 6000, Medical Gas and Vacuum Systems for Healthcare Facilities.

1.3 SCOPE

A. It shall be understood that the requirements for seismic restraints are in addition to other requirements as specified elsewhere for the support and attachment of equipment and mechanical services, and for the vibration isolation of same equipment. Nothing on the project drawings or specifications shall be interpreted as justification to waive the requirements for seismic restraint as specified herein, shown on the drawings and required by Code.

B. The work under this section shall include furnishing all labor, materials, tools, appliances and equipment, and performing all operations necessary for the complete execution of the installation of seismic snubber restraint assemblies as shown, detailed and/or scheduled on the drawings and/or specified in this section of the specifications.

C. The materials and systems specified in this section shall be provided by the Contractor from a single Seismic Snubber Restraint Materials Manufacturer to assure sole source responsibility for the performance of the seismic restraints used.

D. The seismic snubber restraint materials manufacturer shall be responsible for detailed design for seismic supports, including calculation for size and attachment, signed and sealed by registered State of New
1.4 SUBMITTALS

A. See Section 22 0500 for general requirements for submittal materials. In addition to the requirements contained in Section 22 0500, provide submittal information for all products and materials covered under this Section of the Specifications as listed herein.

B. Furnish complete catalog data on all vibration isolators, restraints, and equipment vibration bases to be utilized for the project in order to establish compliance with the plans and specifications and all code requirements.

C. Furnish complete shop drawing information including construction details for all vibration bases; support points and anchor bolt requirements and locations; method of support for piping; method of isolation for piping passing through the building structure; and location and arrangement of seismic restraints.

D. Manufacturers not listed as approved in ‘Part 2 - Products’ of this section must submit for prior approval in accordance with provisions contained in Section 22 0500.

E. Drawings shall be reviewed and certified by a registered Professional Engineer, with a minimum of five (5) years working experience in this field, certifying that the submitted seismic restraint system design and anchorage details complies with all specification requirements and applicable codes.

1.5 CODE REQUIREMENTS

A. Seismic restraints shall be provided for equipment, materials and systems furnished and installed under Division 22 of this Specification in accordance with the requirements of the 2012 International Building Code as adopted and interpreted by the State of New Mexico and the City of Santa Fe.

B. Performance requirements:
 1. Seismic Design Category D.

1.6 SEISMIC RESTRAINT REQUIREMENTS

A. The Contractor shall submit calculations prepared by a State of New Mexico licensed Structural Engineer to substantiate that all items of plumbing equipment and piping systems are properly supported to resist earthquake forces as required herein.

B. All plumbing equipment mounted on vibration isolators shall be provided with seismic restraints securely anchored to the building structure capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements.

C. All items of plumbing equipment required for life safety shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements.
D. All items of plumbing equipment, except as specified above, and all piping furnished and installed under Division 22 shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 50% of their weight.

E. Seismic restraint/snubber manufacturer shall be responsible for the structural design of attachment hardware as required to attach seismic restraints/snubbers to both the equipment and supporting structure on vibration isolated equipment, or to directly attach equipment to the building structure for non-isolated equipment.

F. The Contractor shall furnish a complete set of approved shop drawings of all mechanical and electrical equipment which is to be restrained to the seismic restraint manufacturer, from which the selection and design of seismic restraint devices and/or attachment hardware will be completed. The shop drawings furnished shall include, at a minimum, basic equipment layout, length and width dimensions, installed operating weights of the equipment to be restrained and the distribution of weight at the restraint points.

PART 2 - PRODUCTS

See Division 23, Section 23 0548, for applicable requirements.

PART 3 - EXECUTION

See Division 23, Section 23 0548, for applicable requirements.

END OF SECTION 22 0548
SECTION 220549 - PLUMBING AND ELECTRICAL INSTALLATION COORDINATION

PART 1 - GENERAL

1.1 REQUIREMENTS
 A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 RELATED DIVISIONS AND SECTIONS
 A. Section 22 0500, Common Work Requirements for Plumbing.
 B. Section 23 0900, Facility Management System.
 C. Division 26 for Electrical.
 D. Division 28 for Electronic Safety and Security.

1.3 SCOPE
 A. It is the intention of this section to summarize the coordination of effort defined in the related sections and divisions of this specification.
 B. If there is a conflict between this Section and other Sections and Divisions of this specification, this Section shall be the governing and decisive Section.
 C. Make all connections to motors and controls for equipment supplied and/or installed under Division 22 according to Table 1 on the following page.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. No work shall be performed until the reviewed and marked submittal data have been reissued to the Contractor, unless written permission is obtained from the Architect.
TABLE 1

<table>
<thead>
<tr>
<th>Item or System</th>
<th>Note</th>
<th>Supplied By (3)</th>
<th>Installed By (3)</th>
<th>Powered By</th>
<th>Control Field Wiring By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Motors</td>
<td></td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Motor Control Center Including Starters, Pilot Lights, Heater, Switches, Auxiliary Contacts, and Internal Control Wiring</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Stand Alone Motor Starters (outside motor control centers)</td>
<td>(1)</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Variable Frequency Drives (VFD’s)</td>
<td></td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Fused and Non-Fused Disconnects</td>
<td>(1)</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Control Relays & Control Transformers</td>
<td>(1)</td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Boilers & Domestic Water Heaters</td>
<td></td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Pressure Booster Pump Systems</td>
<td></td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Water Softeners & Other Process Water Equipment</td>
<td></td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Facility Management System (FMS) for Automatic Control and/or Monitoring of Plumbing System & Equipment</td>
<td>(2)</td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Medical Gas System - Alarm Panels, Sensors, Pressure Switches</td>
<td>(3)</td>
<td>Div. 22</td>
<td>Div. 22</td>
<td>Div. 26</td>
<td>Div. 22</td>
</tr>
</tbody>
</table>

TABLE NOTES:

1. Unless specified to be supplied with the equipment
2. Division 26 shall coordinate with Division 23, FMS Contractor as required to provide 120 VAC power to each mechanical space and the central plant as necessary for the FMS and as shown on the drawings. Any additional power, transformers, and distribution shall be provided by the Section or Division indicated.
3. Division 22 indicates the plumbing contractor or their designated representative including equipment suppliers, sub-contractors, etc.

END OF SECTION
SECTION 22 0700 - PLUMBING INSULATION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Materials shall conform to applicable ASTM standards.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

1.3 SCOPE

A. All condensate pipe and fittings, domestic hot water pipe including circulating hot water, interior roof drains including roof drain bowls, interior overflow roof drains including overflow roof drain bowls, domestic cold water, water piping located outdoors exposed to ambient freezing conditions.

B. Equipment covering, including pumps.

C. Underground Piping Systems.

D. Plastic Piping Systems.

1.4 FITTINGS

A. All fittings except as otherwise specified, shall be insulated with the same material and thickness as specified for the pipe.

B. Unions, flanges and valves on hot water, will not require insulation.

1.5 TESTING

A. All piping shall be tested in accordance with the applicable Specification Sections, before any insulation is applied.

PART 2 - PRODUCTS

2.1 INSULATION

A. Insulation shall be as manufactured by Owens-Corning Fiberglas, Knauf, CertainTeed, Johns Manville, or Armstrong, or equivalent, and shall be equal to that specified below. Insulation and all materials on the interior and exterior surfaces of ducts, pipes, and equipment shall have a composite fire and smoke hazard rating not exceeding: Flame spread - 25; fuel contribution - 50; smoke developed - 50, as determined in accordance with ASTM Standard E-84. All insulation materials used for valves and fittings shall have the same ratings as the pipe insulation. Information must be submitted by means of
manufacturer’s literature showing that the proposed materials conform to above specification without exception.

B. Fiberglass pipe insulation shall be rigid molded and non-combustible with 'K' factor of 0.23 at 75°F. Jacket shall be all service (ASJ) vapor barrier jacket with white kraft paper reinforced with glass fiber yarn and bonded to aluminum foil, secured with self sealing longitudinal laps and butt strips. Johns Manville 'Micro-Lok' or equivalent.

C. Hydros Calcium Silicate insulation shall be rigid molded, non-combustible per ASTME 136, conforming to ASTM 533, asbestos-free with 'K' factor of 0.40 at 300°F, maximum service temperature 1200°F, compression strength (block) minimum of 200 PSI to produce 5% compression at 1-1/2” thickness. Johns Manville 'Thermo-12 Gold' or equivalent.

D. Fiberglass rigid board insulation for equipment shall conform to ASTM C612 with 'K' factor of 0.23 at 75°F, R=8.0 minimum, 3.0 pound per cubic foot density. Provide vapor barrier jacket (FSK) with aluminum foil reinforced with fiberglass yarn and laminated to fire-resistant kraft, secured with UL listed pressure sensitive tape and outward clinched expanded staples and vapor barrier mastic. Johns Manville 'Spin-Glas' or equivalent.

E. Elastomeric foam insulation for piping and equipment shall be flexible, cellular, molded or sheet, conforming to ASTM C534, with 'K' factor of 0.28 at 75°F, maximum service temperature of 220°F., maximum flame spread rating of 25 and maximum smoke development rating of 50 (3/4” thickness and less). Connections shall be made using manufacturer’s approved waterproof vapor barrier retarder adhesive. Provide outdoor U.V. protective coating on all insulation exposed to ambient conditions.

2.2 FITTINGS

A. Valves and fittings, where required to be insulated, shall be covered with the same insulation material and thickness as specified for the pipe insulation and finished with PVC covers.

B. Valves and fittings with systems specified to be covered with metal or canvas, or polyvinyl chloride (PVC) jacket shall be covered with material to match piping system jacketing.

C. Polyvinyl chloride (PVC) preformed fitting covers with fiberglass inserts shall be used on valves and fittings, except where metal or canvas jacket is required for piping system. PVC fitting covers shall be Zeston 2000 or equivalent, gloss white and shall have a composite fire and smoke hazard rating not exceeding; flame spread - 25; smoke development - 50. Connections shall be made using tacks and pressure sensitive color matching vinyl tape. Seams shall be on the bottom side of pipe and fittings.

2.3 METAL JACKETING

A. Metal jacket shall be 0.010-inch smooth Type 304 stainless steel, smooth. Provide moisture barrier lining for service temperatures 60°F and less, except where applied over insulation with All Service (ASJ) vapor barrier jacket. Stainless steel jacket shall be installed where specified herein or otherwise indicated on the drawings.

B. Metal jacket shall be 0.016-inch smooth aluminum. Provide moisture barrier lining for service temperatures 60°F and less except where applied over insulation with All Service Jacket (ASJ) vapor barrier jacket. Aluminum jacketing shall be installed where specified herein or otherwise indicated on the drawings.
2.4 PVC JACKETING

A. PVC jacketing shall be Zeston 2000 or equivalent, gloss white, 0.020 inch thickness, minimum, and shall have a composite fire and smoke hazard rating not exceeding; flame spread -25; smoke development -50. Connection shall be made using tacks and pressure sensitive color matching vinyl tape. Seams shall be on the bottom side of pipe and fittings.

2.5 PIPE HANGERS AND SUPPORTS

A. See Specification Section 22 0504 for requirements associated with hangers and supports for piping systems.

B. All insulated piping systems shall be provided with individual hangers sized to encircle the insulation. Hangers for domestic cold water and roof drains may be installed under the insulation, provided that the vapor barrier system for cold piping and the hanger rods are protected from the formation of condensation by application of a heavy coating of vapor barrier mastic material.

C. Insulated piping supported by means of trapeze hangers or roller type hangers shall not rest directly on the hanger or support.

D. The insulation at hangers, trapezes and supports shall be protected by means of galvanized steel insulation half diameter support shields. Provide insulation insert between support shield and piping for piping size 1-1/2” and larger. Insulation inserts shall be heavy density calcium silicate molded insulation. Insulation inserts shall be the following minimum lengths. Factory fabricated thermal pipe shield as manufactured by Pipe Shields, Inc., and specified in Section 22 0504, may be used at Contractor’s option.

<table>
<thead>
<tr>
<th>Pipe Size, In.</th>
<th>Insert Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2" to 2-1/2"</td>
<td>10" Long</td>
</tr>
<tr>
<td>3" to 6"</td>
<td>12" Long</td>
</tr>
<tr>
<td>8" to 10"</td>
<td>16" Long</td>
</tr>
<tr>
<td>12" and larger</td>
<td>22" Long</td>
</tr>
</tbody>
</table>

2.6 PIPE SLEEVES

A. See Specification Section 22 0504 for requirements associated with pipe sleeves for piping penetrations for building walls and frames.

B. Pipe sleeves shall be provided at penetrations through concrete and masonry construction and at fire rated and smoke rated walls and penetrations when required to comply with UL approved penetration assembly. Insulated piping passing through fire walls and smoke walls shall be provided with UL approved fire safing insulation to match the required insulation thickness and the space between the piping penetration and the adjacent wall construction shall be sealed air tight with UL approved fireproof caulking material. Pipe penetration arrangement and installation requirements shall match the applicable UL approved penetration assembly details.
PART 3 - EXECUTION

3.1 DOMESTIC HOT WATER PIPING

A. Domestic hot water piping with operating temperatures of 140°F and less, including recirculating hot water piping shall be insulated with 1-inch thick fiberglass preformed pipe insulation with All Service Jacket (ASJ). Fittings shall be finished with PVC fitting covers.

B. Insulation thickness for domestic and service water systems operating in excess of 140°F, shall be 1-inch thick fiberglass preformed pipe insulation with All Service Jacket (ASJ) for piping 3/4” through 3” size and 1-1/2” thick for piping 4” and larger. Fittings shall be finished with PVC fitting covers.

C. All voids formed by support saddles or other mounting or support hardware shall be filled with insulation.

3.2 DOMESTIC COLD WATER AND ROOF DRAINS

A. Domestic cold water piping including non-potable water piping shall be insulated with 1-inch thick fiberglass preformed pipe insulation with All Services Jacket (ASJ). Fittings shall be finished with PVC fitting covers.

B. Roof drain bowls and horizontal roof drain piping shall be insulated with 1-inch thick fiberglass insulation as specified for domestic cold water piping.

C. Overflow roof drain bowls and horizontal overflow roof drain piping shall be insulated with 1-inch thick fiberglass insulation as specified for domestic cold water piping.

D. All voids formed by support saddles or other mounting or support hardware shall be filled with insulation.

3.3 HANDICAP LAVATORY AND SINKS

A. Domestic hot and cold water piping and P-traps exposed below handicapped lavatories and sinks shall be insulated with HANDI LAV-GUARD insulation kits which satisfy ANSI A117.1 requirements. Insulation shall have a flexible vinyl finish which protects against burning and cushions impact.

B. Countertop sinks indicated within the Architectural drawings to be handicap-compliant shall have an off-centered drain opening and a maximum sink depth of 7-inches.

3.4 PLASTIC PIPING SYSTEMS

A. Plastic piping systems, including but not limited to polypropylene/CPVC, RO/DI piping, acid waste, vent piping and PVC piping, installed within building return air plenums shall be insulated with 1/2” thick fiberglass preformed pipe insulation with All Service Jacket (ASJ). Fittings shall be insulated with preformed insulation fittings or, where preformed fittings are unavailable, neatly insulated with fiberglass duct wrap with white vinyl jacket.

B. All voids formed by support saddles or other mounting or support hardware shall be filled with insulation.

3.5 METAL JACKETING
A. Metal jacketing shall be installed on all field insulated plumbing equipment and on plumbing piping systems exposed within the mechanical equipment spaces, that are installed below 8 feet above the floor, where exposed to physical damage, on outdoor insulated piping, and where noted on the drawings.

B. The jacketing shall be applied with joints overlapped 2" and located to shed water. Joints and seams shall be caulked with an approved weatherproof caulking when located outdoors. The insulation shall be banded 12" on centers or screwed in place 3" on centers.

C. Fittings and valves shall have insulation covered with metal jacket, as specified herein. Fittings and valves on exterior piping and ductwork shall be covered with metal jacketing to match pipe and duct covers. PVC fitting covers, painted to match adjacent metal jacket, may be used on interior pipes and ducts.

3.6 PVC JACKETING

A. PVC jacketing shall be installed on all field insulated plumbing equipment and on all piping systems exposed within the mechanical equipment spaces, that are installed below 8 feet above the floor, where exposed to physical damage, and where noted on the drawings and specifications, except where metal or canvas jacketing is required.

B. Jacketing shall be secured in place in an approved manner by means of tacks and pressure sensitive tape.

C. Fittings and valves shall have insulation covered with PVC pre-molded PVC fittings to match jacketing, as specified below.

D. PVC jacketing shall not be permitted for use on exterior piping systems.

3.7 TERMINATION OF INSULATION

A. The termination of all insulation on pipes, at uninsulated valve connections, or unions, flexible connections, etc., shall be beveled and finished.

3.8 FACTORY INSULATED EQUIPMENT

A. Domestic water heaters and other equipment as specified in the equipment schedules on the drawings shall be factory insulated.

3.9 VICTAULIC COUPLINGS

A. Where Victaulic type couplings or similar piping systems are used, all couplings shall be insulated with insulation materials and thickness equal to the piping system. Insulation of couplings shall be as specified herein for fittings.

END OF SECTION
SECTION 221100 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with the applicable provisions of the General Conditions, Supplemental General Conditions, and the General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead. Solder shall be 95/5 tin antimony, alloy Sb5, conforming to FS QQ-S-571 and NSF 61.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Section 22 0505, Piping Specialties for Plumbing.

D. Section 22 0523, Valves for Plumbing.

E. Section 22 0700, Plumbing Insulation.

F. Section 22 6801, Onsite Utilities, Plumbing.

G. Section 22 0900, Facility Management System.

H. Section 22 6801 and Division 33 for Outside Utilities.

1.3 SCOPE

A. A complete domestic cold water, hot water, recirculating hot water and make-up water system including water heaters, pumps, thermal expansion tanks, meters, backflow protection, shock absorbers, and associated miscellaneous accessories. This section shall include all work within the building to a point approximately 5'-0" outside the building, or as otherwise indicated.

B. Coordinate with Division 33 for site utility drawings and specifications.

PART 2 - PRODUCTS

2.1 PIPING

A. Domestic water piping including soft water piping, non-potable water piping, below grade or slab-on-grade shall be Type L soft copper, ASTM B88. Copper piping 2" and smaller shall be soft tubing and 2-1/2" thru 4" shall be either soft tubing or hard pipe. Domestic water piping 6" and larger including soft
water piping below grade within the building and to a point approximately 5'-0" from the building shall be ductile iron pressure pipe, minimum 150 PSIG working pressure with mechanical joints. Wrap all underground copper pipe and fittings with minimum 20 mil polyethylene with minimum 50% overlay, provide for taping.

B. Domestic water piping including soft water piping, above grade within the building 4" and smaller shall be Type L hard drawn copper, ASTM B88. Domestic water piping larger than 4" shall be copper as specified herein or flanged ductile iron pipe.

C. Proper insulating fittings, as specified in Section 22 0504, shall be installed to prevent electrolytic action between steel and copper piping connections.

2.2 FITTINGS

A. Fittings for copper piping shall be wrought copper or cast brass conforming to ANSI B16.22 and B16.23, with 95-5 solder joints, as specified in Section 22 0504.

B. Mechanically formed tee connections and couplings for copper piping system as specified in Section 22 0504, may be utilized where approved.

C. Fittings for galvanized steel pipe shall be screwed Class 150, standard galvanized malleable iron conforming to ANSI B16.3 or Victaulic or equivalent mechanical pipe couplings as specified in Section 22 0505 and furnished with hot dipped galvanized coating for use with grooved piping system and approved for potable water systems.

D. Fittings for ductile iron pipe shall be flanged or mechanical joint conforming to ANSI/AWWA C110 and C111, Class 250 minimum, cement lined, with bituminous coating.

2.3 JOINTS

A. Joints in copper piping system shall be made using approved "lead-free" solder and flux as described herein and approved by all applicable codes and regulations. Surfaces to be soldered shall be cleaned bright by manual or mechanical means.

B. All joints shall be properly fluxed with a non-corrosive "lead-free" type flux manufactured to approved standards, Federal Specification QQ-S-517. Joints for copper piping systems for cold water 3" and smaller and hot water 2" and smaller shall be made using composition 95-5 tin-antimony solder. Composition 15% silver solder shall be used for all other piping sizes and for all underground joints.

2.4 SHOCK ABSORBERS

A. Furnish and install factory sealed shock absorbers conforming to Federal Specification WW-P-541 at locations shown on the drawings and/or as outlined by Plumbing Drainage Institute Standard WH-201. Josam, Precision, Jay R. Smith, Wade, Watts, Zurn or equivalent.

2.5 DOMESTIC HOT WATER GENERATING EQUIPMENT

A. Water heaters and associated auxiliary equipment shall be as specified on the equipment schedule on the drawings. Natural gas fired or electric domestic water heaters shall be as manufactured by Bock, Bradford-White, Lochinvar, P.V.I., Ruud, Rheem, A.O. Smith, State, or equivalent.

B. Electric instantaneous water heaters shall be by Chronomite, Eemax, Hubbell, Keltech, Rheem, Stiebel Eltron, State, or equivalent.
C. Furnish and install approved expansion tank on cold water make-up supply to hot water generating equipment as recommended by manufacturer or as shown on the drawings and specified in the plumbing equipment and fixture schedule on the drawings, Amtrol, Wilkins, or approved equal.

D. The Contractor shall provide the services of a qualified factory-trained representative to supervise hot water generation system start-up and instruct the Owner’s operating personnel for a minimum of eight (8) hours. A full one (1) year service warranty, including all parts and labor, shall be provided by the Contractor.

E. Natural gas fired domestic hot water boilers and water heater combustion flues, stack, breeching, and combustion air louvers, ducts, etc., shall be provided under Division 23.

2.6 VALVES

A. Valves other than automatic control valves are specified in Section 22 0523, Valves.

B. Automatic control valves shall be as specified in Section 23 0900, Facility Management System, except for automatic control valves furnished as a part of equipment packages, including hot water generating equipment, as specified on the equipment schedule.

2.7 PUMPS

A. Pumps shall be of the type and capacity listed in the equipment schedule. Pumps shall be selected so that the motors will not overload under any operating condition. Furnish one spare mechanical seal of each size required in conjunction with the pumps furnished under this Contract. All base mounted pumps shall have drain pans with tapped pipe connections and 3/4" drain line extended to floor drain. Pumps shall be installed so that they may be removed without the removal of the associated piping. All pumps for potable water applications shall have bronze or stainless steel body and trim.

B. Domestic water inline re-circulating pumps shall be as specified on the drawings and as manufactured by Armstrong, Bell & Gossett, Taco, Thrush, or equivalent.

2.8 WATER METER

A. Domestic water meter assembly shall be furnished by the City of Santa Fe. Meter size and general arrangement shall be as indicated on the drawings. The Contractor shall coordinate with the applicable representatives for the installation of the water meters and shall furnish all associated piping, valves and materials, including meter box/vault, in accordance with details on the drawings and applicable Requirements.

B. All costs, fees, and permits required for the installation of the water meter shall be secured and paid for by the Contractor unless otherwise indicated.

C. See Division 33 and Section 22 6801 for water meters.

D. See Section 23 0900, Facility Management System, for plumbing, meters and instrumentation.

2.9 BACKFLOW PROTECTION

A. All cross-contamination control shall be provided to ensure that no installation of the potable water supply piping system shall be made in a manner that will allow used, unclean, polluted, or contaminated water or substances to enter the domestic potable water system.
B. All backflow devices and assemblies shall be approved by the applicable Administration Authorities and shall be installed according to all applicable codes, regulations, and manufacturer’s instructions. Installation shall allow for required access and clearance for required testing, maintenance, and repair.

C. Reduced pressure backflow preventer assembly shall be furnished and installed by the Contractor. Backflow preventer size and arrangement shall be as indicated on the drawings, and shall be as manufactured by Febco, Hersey, Beeco, Watts, Wilkins, or equivalent. All costs, fees, and permits required shall be secured and paid for by the Contractor, unless otherwise indicated.

D. See Division 33 and Section 22 6801 for backflow protection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Piping installation shall conform to the requirements of Section 22 0500, Common Work Requirements for Plumbing and Section 22 0504, Pipe and Pipe Fittings for Plumbing. Installation of specialties shall conform to the requirements of Section 22 0505, Piping Specialties for plumbing.

B. Insulating Fittings: Insulating unions shall be furnished and installed at all connections between dissimilar metals.

C. Valves: Each water service main, branch main and branch to a group of two or more fixtures shall be valved. Stop valves shall be as specified under fixtures.

D. Flexible Connections: If the Contractor uses a pipe material other than copper to connect to the City water main, provide mechanical joints at the connection point and also either a swing joint or expansion joint at a point 5 ft. outside the building to prevent failure of piping caused by differential settling of building and piping systems. The expansion joint material shall be suitable for domestic water usage and compatible with the sterilization chemicals.

3.2 STERILIZATION

A. All new water piping shall be charged with a chlorine solution containing not less than 50 PPM available chlorine. The solution shall remain in the piping for a period of 24 hours, during which time valves shall be opened and closed to permit a small flow of the solution. At the end of 24 hours, the solution shall be tested and must contain a residual of at least 5-10 PPM chlorine. The system shall then be drained and flushed to provide satisfactory potable water before final connection is made to the existing distribution system.

B. The Contractor shall submit a sample of the water, after sterilization and flushing for testing by an approved laboratory. A copy of the acceptable test report shall be submitted to the Architect prior to substantial completion.

3.3 BACKFLOW PROTECTION

A. Protection: All plumbing fixtures, faucets with hose connections, and all other equipment having plumbing connections shall have their water supplies protected against back-siphonage.

B. Testing: Arrange for testing backflow devices as required by the local health authorities.
3.4 TESTS

A. All water piping, hot and cold, shall be made tight under a hydrostatic test pressure of 150 lbs. per square inch and maintained without pressure loss for a minimum of four (4) hours. No caulking of joints will be permitted. Any joint found to leak under this test shall be broken, remade and a new test applied.

END OF SECTION
SECTION 221123 - FACILITY NATURAL GAS SYSTEM

PART 1 - GENERAL

1.1 REQUIREMENTS
 A. Conform with applicable provisions of the General Conditions and Supplemental General Conditions.

1.2 RELATED SECTIONS
 A. Section 22 0500, Common Work Requirements for Plumbing.
 B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.
 C. Section 22 0505, Piping Specialties for Plumbing.
 D. Section 22 0523, Valves for Plumbing.
 E. Section 23 0900, Facility Management System.
 F. Division 33 and Division 22 for onsite utilities.

1.3 SCOPE
 A. Complete building natural gas piping system including meters, regulators, and miscellaneous accessories. This section shall include all work within the building and to a point approximately 5'-0" outside the building, or as otherwise indicated.

PART 2 - PRODUCTS

2.1 PIPING
 A. Above ground pipe used for the installation, extension, alteration, and/or repair of any gas piping system shall be black steel pipe ASTM A53 Grade A or B, ERW or BW, standard wall, Schedule 40.
 B. All underground gas piping shall be steel or polyethylene plastic piping as specified in Section 22 0523, Valves for Plumbing. All underground steel piping and fittings shall be protected from corrosion by approved coatings or wrapping materials as specified in Section 22 0504, Pipe and Pipe Fittings for Plumbing, and Section 22 6801, Outside Utilities, Plumbing.

2.2 FITTINGS
 A. Fittings for steel piping 2" and smaller shall be either screwed or welded. Screwed fittings shall be Class 150 standard black malleable iron conforming to ANSI B16.3. Weld fittings shall be either standard weight steel butt-weld fittings conforming to ANSI B16.9, or forged steel socket-weld fittings, 2000 pound Schedule 40 conforming to ANSI B16.11.
 B. Fittings for steel piping 2-1/2" and larger shall be standard weight steel butt-weld fittings conforming to ANSI B16.9.
2.3 FLANGES

A. Flanges for steel piping system shall be forged steel, weld neck, or slip-on, 1/16" raised face Class 150 flanges conforming to ANSI B16.5.

B. Flange connections for valves and equipment shall match the rating and drilling of the valves and equipment furnished.

C. Where specifically required by the application, black cast iron Class 125 standard threaded plain face companion flanges may be utilized for flanged connections in threaded piping systems.

D. Gaskets shall be 1/16" thick full face non-asbestos material suitable for the temperatures and pressure application.

E. Flange bolting shall be carbon steel machine bolts or studs and hex nuts, ASTM A307, Grade B.

2.4 VALVES

A. Valves shall be as specified in Section 22 0523, Valves for Plumbing.

B. Valves used in conjunction with gas piping shall be approved for the required service.

2.5 GAS METERS

A. Natural gas meters shall be furnished and installed by the natural gas utility company, unless otherwise indicated on the drawings. All required permits and fees shall be secured and paid for by the Contractor in accordance with Section 22 0500. Gas meter shall be the type and capacity required for the application and shall be located as indicated on the drawings and in accordance with utility company requirements and applicable codes and ordinances.

B. See Division 22, Section 22 6801, for natural gas meters.

C. Natural gas meters shall be furnished and installed by the Contractor in accordance with the information shown on the drawings and in the plumbing equipment and fixture schedule on the drawings.

D. See Section 23 0900, Facility Management System, for meters and instrumentation.

E. All natural gas meters shall be preceded by a main gas supply shut-off valve serviceable and accessible outside the building.

2.6 NATURAL GAS REGULATOR

A. Natural gas regulator shall be furnished and installed with the gas meter by the utility company, set for the required gas leaving pressure shown on the drawings.

B. Natural gas appliance and equipment regulators for all gas fired equipment furnished and installed under Division 23 and for natural gas fired equipment furnished by the Owner and/or under other sections of this specification shall be furnished by the equipment manufacturer or supplier and sized for the system inlet pressure and the required appliance operating pressure.

C. See Division 22, Section 22 6801, for natural gas meter and regulator.

D. Natural gas regulators, as specified and shown on the drawings, shall be furnished and installed by the Contractor.
2.7 **PIPING SUPPORTS**

A. Natural gas piping installed on the building roof shall be supported by means of piping supports, especially designed to absorb thermal expansion and contraction of piping installed on built up and single ply membrane roofs. Wood blocks are not acceptable. Four inch and smaller gas piping shall be mounted on Erico Pyramid pipe supports or equivalent, pipe supports with a total weight not to exceed 100 pounds per pipe stand. Larger piping, and all piping requiring roller bearing action for pipe expansion, shall be mounted on Erico Pyramid RPS-H or equivalent, with a total weight not to exceed 1500 pounds per pipe collar support. Pipe support spacing shall be as recommended by manufacturer and as required by Code.

B. Piping hangers and supports shall be in accordance with Section 22 0504, Pipe and Pipe Fittings for Plumbing.

2.8 **PAINTING**

A. All natural gas piping installed outside the building exposed to the weather and/or exposed to view shall be field painted in accordance with the painting sections of this specification.

PART 3 - EXECUTION

3.1 **INSTALLATION**

A. Piping installation shall conform to the requirements of Section 22 0500, Common Work Requirements for Plumbing, and Section 22 0504, Pipe and Pipe Fittings for Plumbing. Installation of specialties shall conform to the requirements of Section 22 0505, Piping Specialties for Plumbing.

B. Installation of piping and equipment shall be in accordance with applicable codes and regulations, including Uniform Plumbing Code and Uniform Mechanical Code, and NFPA No. 54, National Fuel Gas code.

C. No gas piping shall be installed in or on the ground under any building or structure, and all exposed gas piping shall be at least 6-inches above grade. Ferrous gas piping installed underground in exterior locations shall be protected for corrosion as specified herein and in Section 22 0504, Pipe and Pipe Fittings for Plumbing.

D. Gas piping supplying the building or facility shall be provided with a shut-off valve located outside the building and readily accessible. Where gas piping supplies multiple buildings or facilities, each building shall be provided with a shut-off valve as described herein.

3.2 **EQUIPMENT AND APPLIANCE CONNECTIONS**

A. All gas fired equipment and appliances shall be connected to the gas piping system in an approved manner and shall be furnished with a shut-off valve installed ahead of the unit. Connections shall in no case be less than the unit inlet connection size and shall be rigidly connected, except as otherwise shown on the drawings and allowed by codes and regulations.

3.3 **DRIPS**

A. Accessible capped drip pockets shall be furnished at low points in piping system, connections to appliances and equipment, and other locations where condensation may tend to collect.

3.4 **VENTS**

A. All gas regulators and other required devices installed within the building shall be vented to the outside.
3.5 TESTS

A. All gas piping shall be pressure tested using air, CO2, or nitrogen in accordance with the applicable codes and regulations, including Uniform Plumbing and Mechanical Code as adopted and interpreted by the City of Santa Fe and State of New Mexico, and NFPA No. 54.

END OF SECTION
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions and Special Provisions.

B. Furnish and install all concrete, grout, and other required materials to fill all blockouts and/or sleeves left open for this Contractor's convenience or for the installation of this work.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Section 22 0700, Plumbing Insulation.

D. Division 33 and Section 22 6801 for Onsite Utilities Plumbing.

E. Section 23 0900, Facility Management System.

1.3 SCOPE

A. Complete soil, waste, and vent system, and associated miscellaneous accessories. This section shall include all work within the building to a point approximately 5'-0" outside the building, or as otherwise indicated.

B. Coordinate with Division 33 site utility drawings and specifications.

C. Plumbing equipment drains.

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. General: Piping Materials listed below shall bear the label of the testing agency/standard specified.

B. Soil, waste and vent pipe and fittings below slab:
 1. Hubless cast iron, coated on both sides, conforming to ASTM A 888 and CISPI 301.
 2. Service weight, hub-and-spigot cast iron, coated on both sides, conforming to ASTM A 74.
 3. Schedule 40, solid wall, polyvinyl chloride (PVC) with a cell class of 12454 or 12364 per ASTM D 1784, iron pipe size (IPS) conforming to ASTM 1785 and ASTM D 2665. Cast iron pipe and fittings shall be used on all waste piping subject to waste water temperatures that exceed 120° F.
C. Soil, waste and vent pipe and fittings above grade:
 1. Hubless cast iron, coated on both sides, conforming to ASTM A 888 and CISPI 301.
 2. Service weight, hub-and-spigot cast iron, coated on both sides, conforming to ASTM A 74.
 3. Schedule 40, solid wall, polyvinyl chloride (PVC) with a cell class of 12454 or 12364 per ASTM D 1784, iron pipe size (IPS) conforming to ASTM 1785 and ASTM D 2665. Cast iron pipe and fittings shall be used on all waste piping subject to waste water temperatures that exceed 120° F.

2.2 JOINTS
A. Hubless cast iron: Heavy duty, shielded, minimum (4) band couplings consisting of elastomeric gasket conforming to ASTM C 564 and 0.008” thick type 304 stainless steel shield.
B. Hub-and-spigot cast iron: Double seal compression type rubber gaskets conforming to ASTM C 564, with adhesive type lubricant, Tyler “LUBRI/FAST” or equivalent.
C. PVC: Two step primer/solvent cement procedure per ASTM D 2855. Adhesive primer shall conform to ASTM F 656 and solvent cement shall conform to ASTM D 2564.

2.3 PLUMBING EQUIPMENT DRAINS
A. Equipment drain lines shall be either Schedule 40 galvanized steel pipe with galvanized malleable iron fittings or Type L copper tubing with wrought solder fittings. Provide a dielectric union at all connections between ferrous to copper materials.

2.4 DRAINS
A. Floor drains, floor sinks, and interceptors shall be Josam, Rockford, Jay R. Smith, Wade, Watts, Zurn, Mifab, or equivalent, as specified on the drawings, and compatible with the required piping systems.

2.5 TRAPS AND TAILPIECES
A. Unless otherwise specified, traps shall be copper-alloy adjustable tube type with slip joint inlet and swivel, not less than 20 gauge and without cleanout. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level and swivel joints below the discharge level, metal to metal or metal to plastic type as required for the application. Outlet shall be threaded or socket for solder joint connection as required by the application. Tailpiece shall be copper-alloy to match P-trap. Furnish cast brass wall escutcheon at waste penetration through walls. P-traps, tailpieces, escutcheon, and all piping for above floor exposed installations, including installation within cabinets and casework shall be chrome plated. Underground P-traps shall be coated cast iron [or plastic] as required by the application.
B. Traps and associated trim shall be furnished by the plumbing fixture manufacturer as specified in Section 22 4000 and in the Fixture Schedule on the drawings, or shall be as manufactured by Dearborn, EBC, McGuire, T & S Brass, or equivalent.
C. Traps for acid resistant piping systems shall be compatible material for required piping system.

2.6 GREASE INTERCEPTORS
A. Grease interceptors of the sizes indicated shall be of reinforced concrete, polyethylene, or precast concrete construction, or equivalent capacity commercially available steel grease interceptor with
removable three-section, 3/8-inch checker-plate cover, and shall be installed outside the building. [Steel grease interceptor shall be installed in a concrete pit and shall be epoxy-coated to resist corrosion as recommended by the manufacturer.] Interceptors shall be tested and rated in accordance with Plumbing and Drainage Institute PDI-G101. Concrete shall have 3,000 PSI minimum compressive strength at 28 days.

B. Polyethylene grease interceptors shall be seamless, rotationally-molded High Density Polyethylene with minimum 3/8” uniform wall thickness, suitable for above or below grade installation, built in accordance to ASME A112.14.3 (type C) and CSA B481.1, field adjustable riser system, built-in flow control, and optional outlet options as manufactured by Schier Great Basin, Canplas, Zurn Proceptor, or approved equivalent.

2.7 CLEANOUTS

A. Cleanouts shall be as manufactured by Zurn, Jay R. Smith, Watts, Wade, or Josam, and shall be of the same size as the pipe, except that cleanout plugs larger than 4 inches will not be required. Cleanouts installed in connection with cast iron soil pipe shall consist of a long sweep, quarter-bend or one or two eighth bends extended to an easily accessible place, or as indicated on the drawings. A standard cleanout fitting, Zurn No. ZN-1400-ZB, with polished bronze top shall be caulked into the hub of the fitting and finished flush with the floor. Heavy duty cleanouts shall be Zurn Z-1474, with integral anchor flanges. Where cleanouts in connection with threaded pipe are shown and are accessible, they shall be cast iron drainage T-pattern, 90 degree branch fittings with square head brass screw plugs of the same size as the pipe up to and including 4 inches. Wall cleanouts in finished areas shall be Zurn No. Z-1460-8 with polished stainless steel or chrome plated metal cover.

B. Cleanouts for acid resistant piping system shall be compatible material for the required piping system.

C. Install cover flush with grade (outside) to avoid tripping hazard.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Piping installation shall conform to the requirements of Section 22 0500, Common Work Requirements for plumbing, and Section 22 0504, Pipe and Pipe Fittings for Plumbing. Installation of specialties shall conform to the requirements of Section 22 0505, Piping Specialties.

B. All soil, waste, and vent piping shall be properly graded and installed in strict accordance with all applicable codes and requirements.

C. Make all changes in direction of drainage piping by use of 45 degree wyes, long turn tee wyes, long sweep quarter bends, sixth, eighth or sixteenth bends. Short turn sanitary tees permissible on horizontal to vertical where space conditions require.

3.2 FLASHINGS

A. Flashing for piping through built-up roofing with lead flashing, weight of not less than four pounds per square foot, extending at least 12” in all directions under roofing and up pipe. Cap flash pipe and turn down inside 1” approximately. Run all pipes extending through roof prior to roof installation. Flashing shall be two-piece type, base and cap flashing.

B. Vinyl Flashing: As an option to lead flashing in vents through roof, the Contractor may use vinyl flashing, 20 mil thickness, ASTM C689-62 tear strength, 0.14 #/Ft. equal to Pasco Manufacturing Co., or equivalent. The flashing shall be installed in accordance with the manufacturer’s recommendations.
C. Flash piping through the membrane roofing systems with premolded pipe seal elastomeric flashing and sealants that are compatible with EPDM single ply membrane. The flashing material and installation procedure shall be in accordance with the roofing manufacturer’s recommendations.

3.3 DRAINS

A. All floor drains, trench drains, area drains, and floor sinks shall be installed with grates square with building lines and with the top of grates installed level with adjacent finished floor.

B. The Contractor shall extend drain lines from all equipment requiring drainage, relief valves, and drain pans to the nearest floor drain or floor sink, and shall terminate indirectly with a minimum clearance of one (1) inch or as otherwise required by applicable codes and standards. Relief valve drain lines shall be extended to the nearest floor drain and shall be equal in size to relief valve outlet port.

3.4 PVC PIPING SYSTEMS

A. Installation of PVC piping systems within the building shall be in accordance with all applicable plumbing and building codes and ordinances. No exposed piping or fittings shall be installed within the building ceiling space and return air plenums unless the material complies with all code requirements, including required fire and smoke ratings, or is properly protected to meet the intent of the code. Penetrations of fire rated barriers shall be provided with [acid resistant] cast iron as specified in this section, or as otherwise approved and accepted by the applicable code authority. Piping above grade shall be installed with uniform slope and shall be properly supported to avoid sagging or bending of horizontal or vertical lines due to insufficient support or thermal expansion/contraction. All piping shall be supported and installed in strict accordance with manufacturer’s recommendations.

B. PVC pipe and fittings exposed within building return air plenums shall be covered with an approved insulation material, as specified in Section 22 0700.

3.5 TESTS

A. The sanitary soil waste and vent system and condensate drain system shall be tested by filling system with water. System shall remain filled with no loss of water for a minimum of 2 hours. The system water test shall be applied to the drainage and vent systems either in its entirety or in sections. Preliminary testing shall be accomplished as necessary prior to final test.

B. If applied to the entire system, all openings in the piping shall be tightly closed, except the highest opening, and the system filled with water to point of overflow. If the system is tested in sections, each opening shall be tightly plugged except the highest opening of the section under test, and each section shall be filled with water, but no section shall be tested with less than ten (10) feet of water. In testing successive sections, at least the upper ten (10) feet of the next preceding section shall be tested, so that no joint or pipe in the building (except the uppermost ten feet) of the system shall have been submitted to a test of less than a ten (10) foot head of water. The system shall then be tight at all points.

END OF SECTION
SECTION 221400 - FACILITY ROOF [AND AREA] DRAINAGE

PART 1 - GENERAL

1.1 REQUIREMENTS
A. Conform with the applicable provisions of the General Conditions and Special Provisions.

1.2 RELATED SECTIONS
A. Section 22 0500, Common Work Requirements for Plumbing.
B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.
C. Section 22 0700, Plumbing Insulation.
D. Division 33 and Section 22 6801 for onsite plumbing utilities.

1.3 SCOPE
A. A complete roof drainage and overflow roof drainage and area drainage system and associated miscellaneous accessories. This section shall include all work within the building and to a point approximately 5'-0" outside the building, or as otherwise indicated.
B. Coordinate with Division 33 site utility drawings and specifications.

PART 2 - PRODUCTS

2.1 PIPING
A. Pipe, fittings and couplings below grade or slab-on-grade shall be service weight cast iron no hub or bell and plain end pipe, coated inside and outside, conforming to ASTM A-74 and 87 Standards, or polyvinyl chloride (PVC) sewer pipe Schedule 40, conforming to ASTM D3034.
B. Pipe, fittings and couplings above slab on grade shall be either service weight cast iron no hub or bell and plain end pipe, coated inside and outside, conforming to ASTM A-74 and 87 Standards, or polyvinyl chloride (PVC) sewer pipe Schedule 40, conforming to ASTM D3034.
C. No-hub cast iron pipe shall conform to CISPI Standard 301 and shall be marked with CISPI Label.

2.2 FITTINGS
A. Fittings for cast iron pipe shall be service weight or no-hub cast iron drainage pattern, conforming to ASTM C564, coated for underground installation.
B. Fittings for galvanized steel pipe shall be screwed galvanized cast iron or malleable iron drainage pattern or Victaulic type ductile iron drainage pattern fittings with mechanical couplings as specified in Section 22 0504.
C. Fittings for DWV copper piping shall be solder type copper or brass.
D. Fittings for PVC piping system shall be Schedule 40 drainage pattern, solvent cement type conforming to ASTM B-2855 or elastomeric seal type conforming to ASTM D-3212.
2.3 JOINTS

A. Joints for cast iron pipe and fittings shall be suitable to match the required piping system and shall be either lead and oakum, or double seal compression-type molded neoprene gaskets conforming to ASTM C-564 Standards, and suitable for the class of pipe being jointed, with adhesive type joint lubricant, Tyler "LUBRI/FAST" or equivalent. No-hub couplings shall be minimum four (4) band type with neoprene gasket material, conforming to ASTM 564, and 0.008-inch minimum, Type 304 stainless steel shear ring. Couplings shall be Tyler "Wide Body," Husky Series 4000, Clamp-All, Mission Heavy Weight, Ideal, or equivalent.

B. Joints for galvanized steel shall be threaded, made with approved joint compound.

C. Joints for copper shall be soldered using 95-5 composition tin-antimony solder with non-corrosive flux.

D. Joints for PVC piping system shall be either solvent cement type conforming to ASTM D-2855 or elastomeric seal type conforming to ASTM D-3212, except all joints above grade shall be solvent cement.

2.4 DRAINS

A. Roof drains, overflow roof drains, and area drains shall be Froet, J. R. Smith, Josam, Mifab, Sioux Chief, Wade, Watts, Zurn, or equivalent as specified on the drawings and compatible with the required piping system. Drains shall be suitable for the required building construction system and shall be furnished complete with all extensions, receptors, flashings, and accessories required for the complete water-proof installation.

B. Catch basins shall be provided in accordance with the details and specifications shown on the drawings.

2.5 CLEANOUTS

A. Cleanouts shall be as manufactured by Froet, J. R. Smith, Josam, Mifab, Sioux Chief, Wade, Watts, Zurn, or equivalent, and shall be of the same size as the pipe, except that cleanout plugs larger than 4 inches will not be required. Cleanouts installed in connection with cast iron soil pipe shall consist of a long sweep, quarter-bend or one or two eighth bends extended to an easily accessible place, or as indicated on the drawings. A standard cleanout fitting, Zurn No. ZN-1400-ZB, with polished bronze top shall be caulked into the hub of the fitting and finished flush with the floor. Heavy duty cleanouts shall be Zurn Z-1474, with integral anchor flanges. Where cleanouts in connection with threaded pipe are shown and are accessible, they shall be cast iron drainage T-pattern, 90-degree branch fittings with square head brass screw plugs of the same size as the pipe up to and including 4 inches. Wall cleanouts in finished areas shall be Zurn No. Z-1460-8 with polished stainless steel or chrome plated metal cover.

2.6 ACCESSORIES

A. Refer to Section 22 1316, Sanitary Waste & Vent Piping, for roof flashing requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Piping installation shall conform to the requirements of Section 22 0500, Common Work Requirements for Plumbing, and Section 22 0504, Pipe and Pipe Fittings for plumbing. Installation of specialties shall conform to the requirements of Section 22 0505, Piping Specialties for Plumbing.

B. Roof drainage and area drainage piping shall be properly graded and installed in strict accordance with all applicable codes and requirements. All turns and fittings shall be supported same as for waste and
vent piping as specified in Section 22 1300.

3.2 AREA DRAINS

A. All area drains shall be installed with grates square with building lines, and with the top of grates installed level with the adjacent finish grade level.

3.3 PVC PIPING SYSTEMS

A. Installation of PVC piping systems within the building shall be in accordance with all applicable plumbing and building codes and ordinances. No exposed piping or fittings shall be installed within the building return air plenums unless the material complies with all code requirements, including required fire and smoke ratings, or is properly protected in a manner approved by the administration authority. Penetrations of fire rated barriers shall be provided with cast iron as specified in this section, or as otherwise approved and accepted by the applicable code authority. Piping above grade shall be installed with uniform slope and shall be properly supported to avoid sagging or bending of horizontal or vertical lines due to insufficient support or thermal expansion/contraction. All piping shall be supported and installed in strict accordance with manufacturer's recommendations.

B. PVC pipe and fittings exposed within building return air plenums shall be covered with an approved insulation material, as specified in Section 22 0700.

3.4 TESTS

A. The roof drainage and area drainage system shall be tested by filling system with water. System shall remain filled with no loss of water for a minimum of 2 hours. The system water test shall be applied to the systems either in its entirety or in sections. Preliminary testing shall be accomplished as necessary prior to final test.

B. If applied to the entire system, all openings in the piping shall be tightly closed, except the highest opening, and the system filled with water to point of overflow. If the system is tested in sections, each opening shall be tightly plugged except the highest opening of the section under test, and each section shall be filled with water, but no section shall be tested with less than a ten (10) foot of water. In testing successive sections, at least the upper ten (10) feet of the next preceding section shall be tested, so that no joint or pipe in the building (except the uppermost ten feet) of the system shall have been submitted to a test of less than a ten (10) foot head of water. The system shall then be tight at all points.

END OF SECTION
SECTION 221500 - COMPRESSED-AIR SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes

1. Pipe fittings, valves, and accessories
2. Filters
3. Automatic drain valves
4. Torpedo oil/water separators
5. Air dryers
6. Pressure regulating valves
7. Air receivers
8. Safety valves
9. Air compressors

1.2 SUBMITTALS

A. Submit the following in accordance with subcontract submittal procedures:

1. Manufacturer’s catalog data
2. Manufacturer’s installation instructions
3. Materials/Parts list
4. Operational and Maintenance data
5. Warranties
6. Certification of welders and qualified welding procedure per Section 01 4444 and 01 4455.
7. Welding Inspection Reports, as applicable.

1.3 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section with minimum 5 years’ experience and having maintenance service based within 200 miles radius of installation.

B. Material and Installation: Conform to ASME B31.9, Building Services Piping for systems operating at pressure of 150 psig or less and at temperature of 200°F or less. For systems beyond above pressure and temperature limitations, conform to ASME B31.1, Power Piping unless supplying process air; then use B31.3. The design codes and pressure(s) for this installation are as follows: B31.3; 150 psig.

1.4 WARRANTIES

A. Provide a minimum of 1-year manufacturer’s warranty, parts and labor, for air compressor system.

PART 2 - PRODUCTS

2.1 PRODUCT OPTIONS AND SUBSTITUTION

A. Alternate products may be accepted; follow Section 01 2500, Substitution Procedures.

2.2 COPPER TUBING AND FITTINGS (up to 2 inches)
A. Tubing: Copper, hard drawn or annealed, ASTM B88, Type L

B. Fittings: Wrought copper, ASME B16.22

C. Joints: Solder, ASTM B32, Alloy Sb5 tin-antimony

2.3 STEEL PIPE AND FITTINGS (over 2 inches)

A. Pipe: Black steel, ASTM A53, Schedule 40

B. Fittings: Steel, ASTM A234, Grade WPB, Schedule 40, butt-welding type, ASME B16.9

C. Joints: Welded

2.4 VALVES

A. Gate Valves: MSS SP-80 Class 150, bronze body, bronze trim, rising stem, handwheel, inside screw, solid wedge disc, solder ends to suit piping.

B. Ball Valves: MSS SP-110 Class 150, bronze, chrome-plated brass ball, full port, teflon seats and stuffing box ring, lever handle, solder or threaded ends to suit piping.

C. Globe Valve: MSS SP-80 Class 150, bronze body, bronze trim, solder or threaded ends to suit piping.

D. Swing Check Valve: MSS SP-80 Class 150, bronze body and cap, bronze swing disc with rubber seat, solder or threaded ends to suit piping.

2.5 STRAINER

A. “Y” type, Class 150, 20 mesh stainless steel perforated screen, bronze cast iron body, with blowoff gate valve and plug, solder or threaded ends to suit piping.

2.6 UNIONS AND FLANGES

A. Unions

B. Dielectric Unions

1. Union with galvanized or plated steel threaded end, copper solder end, water-impervious isolation barrier.

C. Flanges (N/A to copper)

1. Forged carbon steel, ASTM A105, Class 150

2.7 FLEXIBLE CONNECTOR

A. Manufacturer: Flex-Hose, Pumpsaver Connectors.
B. Braided bronze or stainless steel flexible connector with corrugated metal hose, minimum working pressure 200 psi at 70 degree F, minimum temperature rating 400 degree F, with solder or threaded ends to suit piping.

2.8 PREFILTER, HIGH-EFFICIENCY COALESCING

A. Manufacturers:
 1. Van Air, Housing Series F200, Filter Grade C
 2. Pneumatics Products, Housing Series P2001, Filter Grade SU

B. High-efficiency coalescing filter efficiency 99.99 percent at 0.6 microns, maximum oil carryover 0.008 ppm by weight, maximum clean dry pressure drop 1.50 psid. Housing maximum working pressure 250 psig at 225 degrees F, furnish with optional two-sided color-coded pressure differential indicator, and without internal float drain.
 1. In/Out Connection: [] inches NPT
 2. Flow Capacity: [] scfm at 100 psig

2.9 AFTERFILTER, HIGH-EFFICIENCY PARTICULATE

A. Manufacturers:
 1. Van Air, Housing Series F200, Filter Grade RC
 2. Pneumatics Products, Housing Series P2001, Filter Grade AF

B. High-efficiency particulate filter efficiency 99.99 percent at 0.9 microns, maximum inlet temperature 150 degrees F, maximum clean dry pressure drop 1.50 psid. Housing maximum working pressure 250 psig at 225 degrees F, furnish with optional two-sided color-coded pressure differential indicator, and without internal float drain.
 1. In/Out Connection: [] inches NPT
 2. Flow Capacity: [] scfm at 100 psig

2.10 AUTOMATIC DRAIN VALVE

A. Manufacturer: Van Air, Model EDV-2002

B. Solenoid valve, brass body, NEMA 4 enclosure, rated at 300 psig, open time 1 to 60 seconds cycle time 1-60 minutes, 6 foot power cord with plug, electrical 115V/ 1 PH/60 Hz, maximum fluid temperature 210 degrees F, ambient temperature range 32-150 degrees F.
 1. Valve In/Out Port Size: 1/2 inch NPT

2.11 TORPEDO OIL/WATER SEPARATOR

A. Manufacturer: Eggelhof Inc., Albuquerque, 4 inch, Model No. 4 - 20 ABS.

B. 4-inch diameter oil/water torpedo separator, ABS construction, 20 inch long.

C. 2-inch diameter oil/water torpedo separator, ABS construction, 20 inch long.

D. Furnish above with safety cable and 20 x 20 inch polypropylene absorbent pad.
2.12 REFRIGERATED AIR DRYER (Air Cooled)

A. Manufacturers:
 1. Van Air, Model RD
 2. Hankison, Model HPR

B. Refrigerated air dryer, air cooled condenser, 35-38 degrees F pressure dew point, indoor installation (ambient temperature 40-100 degrees F), automatic drain valve, and charged with R134a or R22 refrigerants.
 1. Capacity: [] scfm at [] degrees F inlet temperature and [] psig inlet pressure.
 2. Power Voltage: [] V, [] phase, 60 Hz.

2.13 PRESSURE GAUGE

A. Manufacturer: Ashcroft, Type 1009.

B. ASME B40.100, Grade 1A, minimum 2 1/2 inch dial, 1/4 inch NPT brass bottom connection, maximum plus or minus 1 percent full scale accuracy, stainless steel case, phosphor bronze bourdon tube, and isolation valve.
 1. Range: [] psi or as specified on drawings.
 Manufacturer: Anderson Metals, PAC-56NB, Part No. 138-00110.

2.14 PRESSURE REGULATING VALVE

A. Manufacturer: Watts, No. R119 Series

B. Reduced pressure type, range 0-125 psig, diaphragm operated, relieving spring adjustment mechanism, rated at 300 psig maximum, temperature range 40 - 120 degrees F.

2.15 DEW POINT TEST FITTING

A. Manufacturer: Hansen, No. GR-602.

B. Brass quick-disconnect fitting, 1/4 inch FPT x QD.

2.16 AIR RECEIVER

A. Manufacturer: Hanson Tank

B. Carbon steel tank built and tested to ASME Section VIII, Division 1 Pressure Vessel Code, “U” stamped.
 1. Configuration: [Vertical] [Horizontal] tank with ring base and standard, screw or flange inlet and outlet connections with factory exterior prime coat.
 2. Size: [] gallons, rated at [] psi, [] diameter x [] long.

2.17 SAFETY VALVE

A. Manufacturer: Kunkle Model 6010.
B. Safety valve for air service, side outlet, full nozzle design, bronze body, brass and bronze trim, pressure range 15-250 psig, temperature range minus 60 to 406 degrees F, NPT ends, built and tested to ASME Section VIII, Division 1 Pressure Code, “UV” stamped.

1. Inlet Size: [] inch.
2. Set Pressure: [] psi.
3. Capacity: [] scfm.

2.18 AIR COMPRESSOR

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install compressor unit on concrete housekeeping pad.

B. Install compressor unit on vibration isolators. Level and bolt in place. Refer to Section 22 0548, Vibration and Seismic Controls for Plumbing Piping and Equipment.

C. Route condensate drains to nearest floor drain.

D. Provide drain valves at low points of piping system.

E. Install take-offs to outlets from top of main, with shutoff valve after take-off. Slope take-off piping to outlets.

F. Install compressed air couplings, female quick connectors, and pressure gages where branch outlets are indicated as indicated on Drawings.

G. Labeling: Refer to Section 22 0554, Identification for Plumbing, HVAC, and Fire Piping and Equipment.

H. Pressure Testing: Refer to Section 22 0813, Testing Piping Systems.

I. Cap or seal ends of piping when not connected to mechanical equipment to ensure contamination by foreign material does not occur.

END OF SECTION
SECTION 224000 - PLUMBING FIXTURES AND TRIM

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and the General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Section 22 1100, Domestic Water Piping.

D. Section 22 1316, Sanitary Waste and Vent Piping.

PART 2 - PRODUCTS

2.1 FIXTURES AND EQUIPMENT

A. Vitreous china and enameled cast iron fixtures by American Standard, Kohler, Sloan, Zurn, Mansfield, Toto, or equivalent as listed and described in the plumbing fixture schedule on the drawings. All vitreous china and enameled cast iron fixtures shall be white, unless otherwise indicated on the drawings. The material used for plumbing fixtures shall be of non-absorptive, acid-resistant vitreous china, enameled cast iron or stainless steel, and free from all imperfections. Each water service main, branch main, riser and branch to a group of fixtures shall be valved or as otherwise shown on the drawings to provide more stringent requirements. Stop valves shall be provided at each fixture. One piece chrome plated escutcheons shall be installed on all water piping and trap connections at walls or base cabinets. All exposed connecting piping and material shall be chrome plated.

B. Handicap accessible lavatories and counter mounted sinks shall have exposed supply and waste services insulated with rigid, molded insulation kits as manufactured by T.C.I. "Skal-Gard", Brocar "Trap Wrap", True-Bro "Handi Lav-Guard", McGuire "Prowrap", or equivalent. Provide off-set tail piece fittings on all handicap accessible laboratories and sinks as required.

C. Flush valves shall be low water consumption type as specified on drawings. Valves shall be diaphragm or piston type, with metal oscillating non-hold open handle, screw driver back check angle stop assembly with cap, adjustable tailpiece, vacuum breaker flush connection, and spud couplings as required for wall and fixture rough-in. Exposed flush valves shall be fully chrome plated, with chrome plated supply pipe cover. Flush valves shall be American Standard, Delany, Delta, Sloan Regal, Sloan Royal, Zurn, , Toto, or equivalent.
D. Closet seats shall be furnished for water closets as specified on the Plumbing Fixture Schedule on the drawings. Closet seats shall be white unless otherwise required to match water closet. All closet seats shall be of smooth non-absorbent material and shall be properly sized for the water closet bowl type. All closet seats for fixtures for public use shall be open-front type without cover. Water closet seats provided for handicapped fixtures shall meet all handicapped requirements. Hinges, posts, nuts, and pintles shall be of a 300 series stainless steel construction. Water closet seats shall be furnished by the plumbing fixture manufacturer as specified on the Fixture Schedule on the drawings, or shall be as manufactured by Bemis, Beneke, Centoco, Church, Jones Stephens, Olsonite, Sperzel, or equivalent.

E. Floor mounted mop sinks shower floors shall be as specified on the Plumbing Fixture Schedule on the drawings, molded stone or terrazzo, size and arrangement as shown on the drawings, as manufactured by Acorn, Centoco, Designer's Choice, Fiat, Mustee, Stern-Williams, Zurn, or equivalent. All mop sink faucets shall be equipped with inlet checkstops.

F. Stainless steel sinks shall be as specified on the Plumbing Fixture Schedule on the drawings and as manufactured by Kohler, American Standard, Elkay, Just, Advance Tabco, Moen, Intersan, or equivalent. Countertop sinks indicated within the Architectural drawings to be handicap-compliant shall have an off-centered drain opening and a maximum sink depth of 7-inches. All sink basins shall have a center-rear outlet unless noted otherwise.

G. Electric water coolers (EWC) and drinking fountains shall be as specified on the Plumbing Fixture Schedule on the drawings and as manufactured by Acorn Aqua, Elkay, Guardian, Halsey, Haws, Murdock, Oasis, Sunroc, Taylor or equivalent.

H. Hose bibbs and wall hydrants shall be as specified on the Plumbing Fixture Schedule on the drawings and as manufactured by Zurn, Jay R. Smith, Wade, Woodford, Acorn, Chicago, T&S Brass, Watts, Prier, or equivalent. Handles, if specified shall be constructed of metal or brass and finished to match valve unit.

I. Shower valves and mixing valves shall be as specified on the Plumbing Fixture Schedule on the drawings, and as manufactured by Powers, Leonard, Lawler, Speakman, Symmons, Bradley, or equivalent.

J. Emergency fixtures including showers and eyewash shall be as specified on the Plumbing Fixture Schedule on the drawing and as manufactured by Bradley, Chicago, Haws, Speakman, Western, Guardian, Acorn Safety, or equivalent.

2.2 FAUCETS

A. Plumbing fixture faucets shall be brass construction and fully chrome plated, unless special finish is specified on the Plumbing Fixture Schedule on the drawings. Faucets shall be furnished complete with all accessories required for the necessary application, including aerators, handles, spouts, and operating cartridges. Contractor shall coordinate exact faucet requirements with required fixture drilling and water and waste rough-in. Faucets for handicapped fixtures shall meet all handicapped and ADA requirements, including a maximum of five (5) pounds of force to activate controls and adjustable metering faucet water flow duration of ten (10) seconds, minimum. Single hole faucets shall have anti-clocking pin to prevent rotation of valve body.

B. Plumbing fixture faucets shall be furnished by the fixture manufacturer as specified in the Plumbing Fixture Specification on the drawings and Paragraph 2.1 herein, or shall be as manufactured by Chicago, Delta, Moen, Speakman, T&S Brass, Zurn, or equivalent, and shall be commercial grade.

2.3 PLUMBING FIXTURE TRIM

A. Plumbing fixture trim including P-traps, supplies, and strainers shall be furnished by the fixture manufacturer as specified in the Plumbing Fixture Specification on the drawings and Paragraph 2.1
herein, or shall be as furnished by Chicago, Brass Craft, McGuire, T&S Brass, EBC, Zurn, or equivalent.

B. Unless otherwise specified, traps shall be copper-alloy adjustable tube-type with slip joint inlet and swivel, not less than 20 gauge and without cleanout. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level and swivel joints below the discharge level, metal-to-metal or metal-to-plastic type as required for the application. Outlet shall be threaded or socket for solder joint connection as required by the application. Tailpiece shall be copper-alloy, offset style, to match P-trap. Furnish brass or copper wall escutcheon at waste penetration through walls. P-traps, tailpieces, escutcheon, and all piping for above floor exposed installations, including installation within cabinets and casework shall be chrome plated.

C. Fixture supplies, strainers, and trim shall be brass construction. Supplies shall be commercial grade, quarter-turn all brass ball valves, plastic stems and handles are not acceptable. Furnish supply with loose key unless otherwise specified. Supply pipe shall be 3/8” O.D., with smooth (non-corrugated) flexible copper riser and wall escutcheon. Supply assembly shall be completely chrome plated for all exposed installations, including installation within cabinets and casework. Strainers and other miscellaneous fixture trim shall be furnished as required for the proper installation and shall be chrome plated to match faucets, unless special finish is required.

PART 3 - EXECUTION

3.1 INSTALLATION

A. The Contractor shall provide all necessary supports and connection materials and trim for plumbing fixtures as required to assure a complete properly installed and operating system. Installation shall be in accordance with manufacturer’s recommendations and with International Building Code and International Plumbing Code requirements. The Contractor shall caulk fixtures to the adjacent wall, floor and countertop construction with non-shrink, mildew resistance caulking material.

B. Fixture mounting height shall conform to the ADA Accessibility Requirements and coordinated with the Architectural drawings.

1. ADA required Water Closet shall be mounted with top of seat 17” – 19” above finished floor.
2. ADA required Urinal shall be mounted at a maximum of 17” top of rim to finished floor.
3. ADA required Lavatory to be mounted with the rim or counter surface no higher than 34” above finished floor.
4. ADA required shower controls shall be located from 38” minimum to 48” maximum height above the shower floor.
5. ADA required Sinks shall be mounted with counter or rim no higher than 34” above finished floor.
6. ADA required Drinking Fountains or Water Coolers spouts shall be no higher than 36” measured from the floor or ground surface to the spout outlet.

3.2 EQUIPMENT/FIXTURE SUPPORT

A. Furnish and install all “back-up” materials for fixtures and accessories, or as otherwise required by the equipment schedule to properly support and provide a sturdy installation.

3.3 FIXTURE CARRIERS

A. Fixture carriers shall be provided for all wall hung plumbing fixtures, including water closets, urinals, lavatories, sinks, etc., as manufactured by Josam, Jay R. Smith, Watts, Wade, Zurn, MiFab, or equivalent. Carriers shall be bolted to the floor using all of the support bolts recommended by the manufacturer. Where the water closet nipple and studs extend beyond the maximum carrier recommended length, provide additional carrier support as recommended by manufacturer. Water closet carriers shall be horizontal or vertical, single or back-to-back units as required for the fixture installation and piping.
arrangement, and shall be adjustable.

B. Single water closet carriers shall have factory installed rear hold down lugs and anchor foot to provide cantilever support.

C. Wall hung urinals shall be provided with floor mounted fixture carrier complete with upper and lower fixture support plates as required to match fixture installation requirements.

D. Wall hung lavatories and sinks shall be provided with floor mounted concealed arm type chair carriers, single or double (back-to-back) units as required for the fixture installation and arrangement.

E. Contractor shall be responsible to provide the proper arrangement and selection of fixture carriers required for fully concealed installation in the available plumbing chase and/or wall construction.

3.4 EQUIPMENT FURNISHED BY OTHERS

A. The Contractor shall furnish and install complete rough-in and connections, including stop valves on all supply piping for all mechanical services required for equipment furnished and installed under other sections of this specification, and for all owner-furnished equipment.

B. Types of equipment in this category shall include but not be limited to the following: kitchen equipment, shop equipment, hospital and laboratory casework, medical equipment, etc. The Contractor shall provide all pipe fittings, unions, traps, connecting wastes, valves, cocks, regulators, pressure reducing valves, flexible connectors, etc., as required for the services to each piece of equipment.

C. Installation and setting of equipment and fixtures furnished under other Sections of this Specification will not be provided under Division 22 of this Specification, unless otherwise indicated.

3.5 FIELD MEASUREMENTS AND COORDINATION

A. Exact location and rough-in requirements shall be carefully coordinated. Contractor shall refer to drawings and specifications, and shall check manufacturer's data, shop drawings and rough-in drawing submitted under Division 22 and other Divisions of this specification and make all field measurements to the extent necessary to ensure his understanding of the work required to provide for complete rough-in installation.

3.6 CLEANING

A. All fixtures shall be thoroughly cleaned before final acceptance of the work.

END OF SECTION
SECTION 226801 - OUTSIDE UTILITIES

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with the applicable provisions of the General Conditions and Supplemental Conditions.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

C. Soldered joints below grade shall be made using Sil-Fos or Phos-Copper.

1.2 SCOPE

A. Natural Gas System.

1.3 RELATED SECTIONS

A. Section 22 0500, Common Work Requirements for Plumbing.

B. Section 22 0504, Pipe and Pipe Fittings for Plumbing.

C. Section 22 0505, Piping Specialties for Plumbing.

D. Section 22 0523, Valves for Plumbing.

E. Section 22 1100, Domestic Water Piping.

F. Section 22 1316, Sanitary Waste and Vent Piping.

G. Section 22 1400, Facility Roof Drainage.

H. Section 22 1123, Facility Natural Gas System.

1.4 GENERAL REQUIREMENTS

A. Excavation and backfilling shall conform to the requirements of Division 2 and Section 22 0503 on Excavation, Trenching, and Backfilling for Utilities. Work covered by this section will not be accepted until backfilling connected with the work has been completed satisfactorily. Any section of the utilities that is found defective in material, alignment, grade, or joints before acceptance shall be corrected. All pipe and accessories shall be of new and unused material. The full length of each section of pipe shall rest solidly upon the pipe bed, with recesses excavated to accommodate the bells and joints. Any pipe that has the grade or joint disturbed after laying shall be taken up and relaid. The interior of the pipe shall be thoroughly cleaned of all foreign matter before being lowered into the trench and shall be kept clean during laying operations by means of plugs or other approved methods. The pipe shall not be laid
in water, or when trench or weather conditions are unsuitable for the work. Water shall be kept out of the trench, until the joints are completed. When work is not in progress, open ends of pipe and fittings shall be securely closed so that no trench water, earth or other substance will enter the pipes or fittings. Any section of pipe found to be defective before or after laying shall be replaced with new pipe without additional expense to the Owner. Minimum depth of trench for water piping shall provide 42 inches of cover over the pipe. Minimum depth of trench for gas shall be 30 inches for plastic or 24” for steel.

1.5 UNDERGROUND PIPING IDENTIFICATION

A. The location of each underground piping system shall be marked using a continuous, pre-printed, colored plastic ribbon tracer tape, as specified in Section 22 0500. Additionally, non-metallic underground piping shall be provided with a special detection type tape conforming to applicable Code requirements.

PART 2 - PRODUCTS

2.1 NATURAL GAS SYSTEM

A. The gas distribution system is intended for the distribution of natural gas and the materials, appurtenances and workmanship used in this system shall be suitable and approved for natural gas service. Any section of the gas distribution system that is found defective in materials or workmanship before acceptance shall be corrected.

B. Welders for steel piping shall be certified in accordance with the provision contained within Section 22 0500.

C. Contractor shall have a written procedure approved by the State of New Mexico for installation of polyethylene gas piping. Submit evidence of qualifications prior to commencing work on the natural gas piping system.

D. The gas system shall conform to the applicable requirements of all State of New Mexico codes and ordinances including the Uniform Plumbing Code, and NFPA No. 54, and to the rules and regulations of the Utility Company supplying the gas, including the U.S. Department of Transportation “Pipeline Safety Regulations, Part 192, CFR-49.

E. In shipping, delivering, and installing, pipe and accessories shall be handled in such manner as to ensure a sound, undamaged condition. Particular care shall be taken not to injure pipe and pipe coatings. No pipe or material of any kind shall be placed inside another pipe or fitting after the coating has been applied. Coated and wrapped steel pipe shall be handled in conformance with the American Water Works Association Specification C204.

F. Submit manufacturer’s catalog data and installation procedures on pipe, fittings, valves, risers and other material to be incorporated into construction for the natural gas distribution system.

G. Piping: Provide any of the following optional piping systems unless shown otherwise on the plans. All pipe and accessories shall be new and unused.

1. Polyethylene Plastic Pipe: Underground natural gas piping distribution system shall be black or yellow polyethylene plastic natural gas distribution pipe with heat fusion joints. Pipe shall be PE-2406, PE-3406, or PE-3408 in accordance with ASTM D2513, as manufactured by POLY-ARK, PLEXCO, Poly-Pipe or equivalent. Contractor shall use the same type and designation of piping throughout the project. Piping shall have approved tracing system (copper 14 gauge wire, or tape) and shall be installed in compliance with all requirements of Authority in jurisdiction.

 a. Risers: Anodeless risers shall consist of polyethylene encased steel pipe sweeps integrally
connected to appropriately sized polyethylene pipe at the bury end with threaded IPS connections at the exposed end. Risers shall be as manufactured by Wayne or equivalent. Above ground piping and fittings used to connect to building services shall be black steel, Schedule 40, as specified in Division 23, Section 23 07 00. Incidental below-ground pipe and fittings shall conform to the above specifications and shall be coated and wrapped.

b. Valves and Valve Boxes: Natural gas main valves shall be plastic valves of the size specified suitable for gas service, compatible with the polyethylene pipe utilized, and conforming to ANSI B16.40, with a minimum working pressure of 125 PSIG, Rockwell or equivalent. Valves shall be installed in cast iron valve box and cover as specified under section for Water Systems, and shall be marked with "GAS" on cover.

H. Gas Meters:

1. Natural gas meters shall be furnished and installed by the natural gas utility company, unless otherwise indicated on the drawings. All required permits and fees shall be secured and paid for by the Contractor in accordance with Section 22 0500, Common Work Requirements for Plumbing. Gas meter shall be the type of capacity required for the application and shall be located as indicated on the drawings and in accordance with New Mexico Gas Company requirements and applicable codes and ordinances. All natural gas meters shall be preceded by a main gas supply shut-off valve serviceable and accessible outside the building.

2. See Division 22, Section 22 1123, Facility Natural Gas System for natural gas meters.

3. See Division 23, Section 23 0900, Facility Management Systems, for meters and instrumentation.

I. Natural Gas Regulator:

1. Natural gas regulator shall be furnished and installed with the gas meter by the utility company, and set for the required gas leaving pressure shown on the drawings.

2. See Division 22, Section 22 1123, Facility Natural Gas System for natural gas meter and regulator.

PART 3 - EXECUTION

3.1 GENERAL

A. Install utility service lines to a point of connection to the building service lines, approximately five (5) feet outside of the building, and make connections to the building service lines in an approved manner. See the applicable specification sections for requirements associated with the building service lines. All non-metallic piping systems installed under this section of the specification shall terminate approximately five (5) feet from the building and piping system materials approved for installation within the building and specified in the applicable sections shall be provided for connection to the underground utility systems and extension to the building.

B. Installation of utility piping distribution systems including natural gas systems shall be installed as specified herein and in strict accordance with manufacturer’s recommendations.

C. In shipping, delivery, and installation pipe and accessories shall be handled in such manner as to ensure sound undamaged condition.

D. Cutting of pipe shall be done in a neat and workmanlike manner without damage to the pipe. Unless otherwise authorized. Cutting shall be done by means of an approved type of mechanical cutter. Wheel cutters shall be used whenever possible.

E. Where connections are made between new work and existing mains, the connections shall be made by using specials and fittings to suit the actual conditions. Standard methods are available for making connections to various types of pipe, either under pressure or in the dewatered condition.
F. Pipe passing through walls of vaults, pits, and structures shall be provided with ductile-iron or Schedule 40 steel wall sleeves. Annular space between walls and sleeves shall be filled with rich cement mortar. Annular space between pipe and sleeves shall be sealed in accordance with requirements contained in Section 22 0504.

G. Flanged pipe shall only be installed above ground or within vaults, pits, or structures only.

3.2 INSTALLATION

A. Piping installation shall conform to the requirements of Section 22 0500, Common Work Requirements for Plumbing, and Section 22 0504, Pipe and Pipe Fittings for Plumbing. Installation of specialties shall conform to the requirements of Section 22 0505, Piping Specialties for Plumbing.

B. Installation of piping and equipment shall be in accordance with applicable codes and regulations, including Uniform Plumbing Code and NFPA No. 54, National Fuel Gas Code.

C. Where the location of the water and sewer lines are not clearly defined in dimensions on the drawings, the water line shall not be laid closer horizontally than ten (10) feet from a sewer except where the bottom of the water line will be at least 12 inches above the top of the sewer line, in which case the water line shall not be laid closer horizontally than six (6) feet from the sewer. Where water lines cross under gravity-flow sewer lines, the sewer pipe for a distance of at least ten (10) feet each side of the crossing shall be fully encased in concrete or shall be made of pipe material approved for use within the building, with no joint located within three (3) feet horizontally of the crossing. Water lines shall in all cases cross above sewage force mains and shall be not less than two (2) feet above the sewer main. Joints in the sewer main, closer horizontally than three (3) feet to the crossing, shall be encased in concrete.

D. Water lines shall not be laid in the same trench with sewer lines, gas lines, fuel lines, or electric systems.

E. Copper tubing shall not be installed in the same trench with ferrous piping materials. Where copper tubing crosses any ferrous piping material, a minimum vertical separation of 12 inches must be maintained between pipes.

F. Where utility piping systems are required to be installed within three (3) feet of existing or new structures, the pipe shall be of a material approved for installation within the building or shall be installed within a sleeve of rigid conduit to a point 10'-0" on either side of the structure. Care shall be exercised and proper precautions taken during installation of the pipe and sleeve to assure that there will be no damage to the structure and no settlement or movement of foundations or footings. Any damage occurring as a result of the Contractor’s operation shall be corrected and all costs connected therewith shall be borne by the Contractor.

3.3 NATURAL GAS SYSTEM

A. Pipe Laying:

1. Lines may conform to the surface profile but should be graded as uniformly as practicable between pronounced high and low points. Pipe shall be laid on firm soil for the full length, and where the trench has been excavated below grade, either inadvertently or purposely, it shall be backfilled with suitable material and thoroughly tamped so as to provide full length bearing. Laying the pipe on blocks to produce uniform grade shall not be done. The pipe shall be clean inside before it is lowered in the trench and shall be maintained free of water, soil, and all other foreign matter that might injure or obstruct the operation of valves, regulators, burners, or other equipment. All openings to the pipe shall be closed by suitable means at all times except as the actual progress of the work may require. Stub ends and fittings installed for future connections.
shall be closed with plugs or caps. Minor change in line or grade of steel pipe, which can be accomplished through flexibility of the pipe without producing permanent deformation or overstressing the joints, may be made when approved. Changes in line or grade which exceed the limitations specified above shall be made with suitable fittings.

2. Install gas piping in separate trench with minimum horizontal clearance of thirty-six (36) inches from other utilities. Maintain twelve (12) inches vertical clearance at utility crossings. Maintain minimum cover to finish grade of 24 inches for steel or 30 inches for plastic piping. Snake plastic pipe laterally in trench to accommodate expansion and contraction of materials.

B. Jointing:

1. All joints in steel gas distribution system shall be made by the metal arc-welding process or oxyacetylene welding process in conformance with the American Standards Association Code B31.1, and in accordance with applicable requirements contained in Sections 22 0500 and 22 0504.

2. Joints for polyethylene natural gas piping distribution system shall be heat fusion welded or mechanical coupling installed in strict accordance with manufacturer’s recommendations by qualified and certified plastic pipe installers. Foundation and bedding for plastic piping systems shall be in accordance with installation recommendations by the manufacturer.

C. Building Service Connections: Natural gas service connections to each individual building shall be made by means of an approved anodeless riser and steel pipe and fittings. All connections to buildings and service regulator piping shall be above ground, see Division 23, Section 22 1123.

3.4 TESTING OF NATURAL GAS

A. All gas piping shall be pressure tested using air, CO₂, or nitrogen in accordance with the applicable codes and regulations, including Uniform Plumbing and Mechanical Code [as adopted and interpreted by the City of Santa Fe and State of New Mexico, and NFPA No. 54. Plastic piping shall be tested in accordance with 49 CFR, Part 192.513, except that these pressure shall be at least 60 PSIG.

B. All pipe joints in piping system shall be exposed until they are tested. Piping between joints may be backfilled prior to test.

3.5 COMMISSIONING SYSTEM

A. The Contractor shall furnish, install, and set all regulators based on capacity and pressure as shown on drawings. Provide a plugged tee for measuring downstream pressure from regulator. A U-tube water manometer shall be used to adjust the leaving pressure. Provide a record of the entering and leaving pressure for each regulator.

3.6 CLEANUP

A. Upon completion of the installation of all outside utilities, Contractor shall remove all surplus construction materials and debris resulting from the work.

END OF SECTION
SECTION 230500 - COMMON WORK REQUIREMENTS FOR HVAC

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. See General Conditions and Supplemental General Conditions.

B. The requirements listed under General Conditions and Supplemental General Conditions and the General Requirements are applicable to this Section and all subsequent sections of this Division and form a part of the contract.

1.2 DESIGN INTENT

1.3 INDEX OF SPEC SECTIONS FOR THIS DIVISION

23 0500 Common Work Requirements for HVAC
23 0503 Trenching and Backfilling
23 0504 Pipe and Pipe Fittings
23 0505 Piping Specialties
23 0523 Valves
23 0548 Vibration and Seismic Controls for HVAC
23 0549 HVAC and Electrical Installation Coordination
23 0593 Testing, Adjusting and Balancing of Mechanical Systems
23 0700 Mechanical Systems Insulation
23 0900 Automatic Temperature Controls
23 2313 Refrigerant Piping System and Equipment
23 3000 Air Tempering System and Equipment
23 7413 Packaged Outdoor AHU

1.4 DEFINITIONS

A. General: Terms will have meanings as defined in Webster’s Eleventh New Collegiate Dictionary except as noted below.

B. Entities

1. Owner: City of Santa Fe
2. Architect: Atkin Olshin Schade Architects
3. Engineer: Bridgers & Paxton
4. Owner’s Representative: The Owner will designate his representative after bid. The abbreviation “OR” may be used throughout these specifications to refer to the Owner’s Representative.
5. Owner’s Agents: The Architect, Engineer, and others authorized to act on behalf of the Owner.

C. Actions

1. Supply: Procure and deliver to the site with all features as specified, required per code, and as required for proper installation. Include submittals, O&M manuals, operator instructions, and warranty.
2. Install: Set in place in accordance with manufacturer’s instructions, contract documents, and
applicable codes and standards. Coordinate the installation with other disciplines, start, and demonstrate proper operation.

3. Furnish: Supply and install.

5. Accepted: By the Owner’s Representative except as noted.

6. Approved: By the Owner’s Representative except as noted.

7. Review: By the Engineer except as noted.

D. Locations

1. Buried: Surrounded by soil or other material, either beneath the building or exterior to the building.

2. Exterior: Exposed to rain or snow. Examples include rooftop locations, spaces around cooling towers, pipe racks, etc.

3. Interior: Not exterior or buried. Examples include not only spaces within the heated envelope of the building, but also unheated attics, covered loading docks in which spaces are protected from rain and snow, utility tunnels, sheds, etc.

4. Finished Spaces: Interior spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated attics, spaces above ceilings, crawlspaces, and tunnels.

5. Exposed: Exposed to view. Examples include finished spaces mechanical equipment rooms, rooftops, etc.

E. Other Definitions:

1. 24/7: 24 Hr/day, 7 days per week, year-round.

2. AHJ: Authorities having jurisdiction. The authorities having jurisdiction over this project are established by statute, and include governmental building departments, fire marshals, fire departments, etc. No attempt is made to list all such entities here; a qualified Contractor is expected to know and coordinate with the various authorities having jurisdiction.

3. FMS: Facility Management System

4. Local: Based no further from the job site than the Engineer is. For example, where the specifications call for a local factory authorized service agent, then on a daily basis that agent must be based in an office or warehouse located no further from the project site than the Engineer’s office.

5. OAE: Or approved equal.

1.5 CODES AND PERMITS

A. Perform all work in accordance with the 2015 International Building Code, the 2012 Uniform Plumbing Code, and the 2012 Uniform Mechanical Code, as adopted and interpreted by the State of New Mexico and City of Santa Fe, and the National Fire Protection Association (NFPA Regulations), current adopted edition. Provide all materials and labor necessary to comply with rules, regulations and ordinances. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern. Contractor shall hold and save the Owner and his agents free and harmless from liability of any nature or kind arising from the Contractor’s failure to comply with codes and ordinances.

B. Secure and pay for all permits necessary for performance of the work, including utility connections, extensions, meter pits and meter sets and tap fees for water, storm sewer, sanitary sewer and natural gas, unless otherwise specified herein.

C. Comply with the requirements of, and the recommendations of:
1. Applicable county and state mechanical, electrical, gas, plumbing, health and sanitary codes, laws and ordinances
2. National Electrical Manufacturer’s Association
3. National Electrical Code
4. Underwriters Laboratories
5. American National Standards Institute
6. American Society for Testing Materials
7. Local utility companies
8. National Fire Protection Association
9. ASME Boiler and Pressure Vessel Codes
10. Occupational Safety and Health Administration
11. International Fire Code
12. Midwest Insulation Contractors’ Association (MICA)
13. Sheet Metal and Air Conditioning Contractors’ National Association (SMACNA)
15. American Gas Association

1.6 PRIOR APPROVAL

A. Refer to Division 01 for Prior Approval Requirements.

1.7 DOCUMENT MANAGEMENT

A. Contractor is encouraged to use a web-based document management system for RFIs and submittals. If used, Contractor shall provide and pay for licenses and training for the engineer’s project personnel. The section below describes procedures for handling submittals if a web-based document management system is not used. If a web-based system is used, the procedures below shall be modified as appropriate.

1.8 SUBMITTALS

A. See Division 1 and individual specification sections within this division for additional submittal requirements.

B. Prior to purchasing materials, equipment and services, submit descriptive literature for review.

C. See Division 1 and individual specification sections within this division for additional submission requirements. The following describes general submittal procedures. More specific procedures will be established after award. Whenever electronic files are to be submitted, e-mail them through normal channels. But if files are too large to e-mail, then submit them in quantities as described below.

1. Submittal Schedule: Along with the first item submitted for review, include a schedule listing all items to be submitted and an approximate date for each submittal. Submit this schedule in both hard copy and electronic form (Microsoft Excel). Normal review time will be 10 working days or as indicated in Division 1. Schedule should identify any submittals for which expedited review is requested. Update this schedule and resubmit it monthly (by e-mail) for information.

2. Include the following information with each submittal:
 a. Cover sheet identifying the project name, contractor, architect, engineer, and items included. Indicate symbol numbers, spec section, etc.
 b. A blank space large enough to accept a review stamp.
 c. Performance under the specified conditions
 d. Cover sheet shall clearly identify and HIGHLIGHT any ways in which the submitted
3. Quantities:

a. Brochures: Submit no more than seven copies plus a PDF.
b. Drawings: Submit one reproducible, one print, plus a PDF.

4. Engineer will review one original submittal and one resubmittal for each item. If the Contractor fails to provide the required data or acceptable items with his second submittal, he will be charged for the Engineer's costs for the third and subsequent reviews.

5. Required Information: Submit information to allow the Engineer to easily determine whether the submitted components comply with the general design intent. Include relevant descriptions of materials, features, performance, quality and dimensions. Cross out all features, options and accessories which will not be provided. It is assumed that all specified, indicated and/or required features will be provided unless specifically noted otherwise.

6. Where specifications require a local factory authorized service agent, submit the name, address, and contact information for this agent. Include this information also in the O&M Manual.

D. Review of Submittals: Engineer will review submittals for general conformance with the design intent.

1. Review of a separate item as such will not indicate review of the assembly in which the item functions.

2. Review of submittals shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents, nor for errors or omissions in the submittals; or for the accuracy of dimensions, the adequacy of connections, and the proper and acceptable fitting, execution, functioning and completion of the work.

3. Review will not relieve the Contractor of responsibility to comply with the contract requirements, or responsibility to ensure that equipment fits within the allotted space with required clearances for equipment operation, service and maintenance, including minimum clearances required by applicable codes, manufacturer’s installation instructions and as necessary for proper clearance in front of all electrical panels as defined by the National Electric Code (NEC).

4. For commodity type items (plumbing fixtures, terminal units, registers, diffusers, etc), Engineer will review submittals for type only. Contractor to coordinate sizes and quantities.

5. Actions: Engineer will return submittals with one of the following actions:

- NO EXCEPTIONS TAKEN Contractor may proceed with the work as submitted
- EXCEPTIONS AS NOTED Contractor may proceed with the work and without resubmittal provided he complies with all exceptions noted in the submittal, and so states in a letter
- REVISE AND RESUBMIT Resubmit in accordance with the indicated comments
- REJECTED Resubmit in accordance with the contract documents
- RETURNED WITHOUT ACTION This submittal has not been reviewed, and therefore the Engineer is returning it with no direction to the Contractor.

E. Substitutions:

1. Unauthorized Substitutions: If substitute materials, equipment or systems are installed without prior review or if any work is installed in a manner which is not in conformance with the requirements of this specification and for which the Contractor has not received written authorization, remove such unauthorized work and install work in accordance with the contract documents at no change in contract amount.
2. Authorized Substitutions: Provide all accessories and features as required and coordinate substitutions with other disciplines. Bear any extra expenses resulting from the use of substitutions which affect adjoining or related work required in this division or other divisions of the work.

3. If the Contractor substitutes equipment for that indicated on the drawings, he shall prepare a 1/4 inch = 1 foot installation drawing for each equipment room where a substitution is made, using dimensions of substituted equipment, and including piping, and electrical equipment requirements, to verify that equipment will properly fit within the space with adequate clearance for maintenance and replacement. Submit this drawing for review.

F. Schedule: Submit all submittals in a timely manner consistent with the requirements for completing the work covered by this contract within the prescribed contract time. Be aware that there is risk in ordering components, fabricating work, and/or installing work prior to review. If the Contractor proceeds prior to review, and then the review comments required modifications to work which has begun or has been completed, then Contractor must comply with the review comments at no change in contract amount or schedule.

G. Shop Drawings

1. Submit shop drawings for
 a. Mechanical equipment rooms and other spaces housing air handling equipment, heat transfer equipment, fluid handling equipment, machinery, etc.
 b. Complete supply, return, and exhaust ductwork systems, both exposed and concealed.
 c. Piping for HVAC, plumbing, and fire protection systems, both exposed and concealed.

2. Show the location and elevation of all equipment, ductwork and piping, as well as openings through slabs and walls. Include plans, elevations and sections as appropriate. Clearly show the manner in which the systems fit into the available space and relate to each other and to the building elements. Indicate required sleeves and openings in general construction elements. Indicate required clearances for operation, maintenance and replacement of operating devices and equipment. Drawings shall be of appropriate scale to facilitate coordination and understanding, but not smaller than 1/4 inch scale for floor plans and 1/4 inch scale for equipment rooms and chases.

3. Conflicts: The engineer has endeavored to work out conflicts in areas where the design is congested, but has not tried to show all required offsets to coordinate with the building construction and building systems, particularly in less congested areas. The intent is that the Contractor coordinate the design of the piping and ductwork distribution systems with the building construction and the various building systems, particularly in less congested areas. Provide experienced designers to perform such services and prepare shop drawings. Exercise good design practice in working out conflicts without compromising system operation or maintenance. Provide fittings, offsets, etc., as required. Contractor shall include this design effort and include the labor and materials for such fittings and offsets in his base bid. Except in extremely unusual circumstances, no additional costs will be allowed related to working out conflicts. Coordinate with other disciplines as required. Identify on the shop drawings those areas where redesign was necessary to resolve design conflicts.

 a. In the event that the Contractor desires direction in resolving a design conflict or desires prior approval of a recommended approach to resolving a conflict, submit an RFI which identifies the conflict and suggests a recommended solution.

 b. In resolving conflicts, gravity lines and larger distribution mains will generally have priority over pressurized lines and smaller lines as follows:

 Plumbing waste and vent lines
Roof drains
Steam and condensate piping
Supply, return and exhaust ductwork
Fire sprinkler mains
Heating hot water and chilled water piping
Domestic hot and cold water
Fire sprinkler branch piping and sprinkler runouts
Pneumatic control piping
Miscellaneous special piping systems

4. Use of Engineer’s CADD Database or BIM Model: The Engineer will provide the Contractor electronic files of the Engineer’s CADD Database or BIM Model of the design documents if the Contractor completes and submits the License Agreement form included at the end of this spec section. These files show the general design intent and may be used as a starting point for the Contractor to begin his shop drawings and coordination effort, but the Contractor should not use them as a basis for ordering or fabrication. The normal submittal process still applies, regardless whether the Contractor elects to use the Engineer’s CADD Database or BIM Model.

H. Submittals Required under this Specification Section:

1. Electrical Components: Motors, Motor Controllers, and Variable Speed Drives
2. Identification: Products used to identify equipment, ductwork, valves, piping, and control devices.

1.9 MISCELLANEOUS PROVISIONS

A. Qualifications

1. All mechanics shall be skilled in their respective trade.
2. All welders shall be certified in accordance with the ASME Boiler Test Code, Section IX, latest issue.

B. Regulated Materials: Comply with all state, local and federal regulations regarding the storage, handling or disposal of oils, lubricants, cleaning agents, refrigerants, other liquids and gases, and hazardous materials.

C. Factory Identification: Provide all materials and equipment with labels sufficient to show compliance with these specifications and the performance requirements indicated on the drawings. All equipment shall carry a permanent label installed by the manufacturer stating that the equipment complies with ASHRAE/IESNA Std. 90.1.

D. Hazardous Conditions: Protruding metal (bolts, steel angles, etc.) potentially hazardous to maintenance and operation personnel, shall be cut back and/or protected to reduce the risk of injury.

E. Hazard Signs

1. Provide a sign reading, "Hazardous Area - Authorized Personnel Only" on the doors to all equipment rooms, fan plenums, and similar areas containing moving or rotating parts, or other potentially hazardous environments.
2. Provide a sign reading, "Confined Space - Entry by authorized personnel only by permit" for all confined spaces. Confined spaces shall be as designated by OSHA Standard 1910.146. This generally means a space that:
a. Is large enough and so configured that an employee can bodily enter and perform assigned work; and
b. Has limited or restricted means for entry or exit (for example, tanks, vessels, storage bins, hoppers, vaults, and pits are spaces that may have limited means of entry); and
c. Is not designed for continuous employee occupancy.

3. Survey the final premises to determine where any potentially hazardous areas exist. If the Contractor feels that hazards exist which cannot be suitably provided for through the above typical methods, he shall forward in writing his concerns, and request for a decision concerning the referenced hazard, prior to the final inspection of the facilities.

1.10 GUARANTEE-WARRANTY

A. See Division 1 for additional information on warranties. Warranties shall run for one year from substantial completion unless indicated otherwise.

B. The following warranty shall be binding:

"The Contractor warrants that this installation is free from mechanical defects. Contractor agrees to replace or repair any part of the installation which may fail within a period of one year after the date established below, provided that such failure is due to defects in materials or workmanship, or to failure to follow the specifications and drawings. This warranty shall begin on the date set forth in the Certificate of Substantial Completion, AIA Form G704, or other such date as documented in writing by the Owner’s Representative."

C. The extent of guarantees or warranties by equipment and/or materials manufacturers will not diminish the requirements of the Contractor’s warranty to the Owner.

PART 2 - PRODUCTS

2.1 PRODUCT GENERAL REQUIREMENTS

A. General: Products supplied under Division 23 shall comply with the following except as noted elsewhere.

B. Products shall be new; shall be the product of manufacturers regularly engaged in the production of plumbing, heating, ventilating, air conditioning, and control system equipment; and shall be the manufacturer’s latest design. Specs and equipment schedules establish expectations regarding standard of quality and operating intent.

C. Hazardous or Environmentally Damaging Materials: Products shall not contain asbestos, mercury, PCBs, or other materials harmful to people or the environment.

D. Products shall be suitable for the conditions under which they are installed and operated. Prior to or during the submittal phase advise the Owner’s representative and the Engineer in writing regarding any concerns about the suitability of the specified products for the intended application or service. Request clarification if any question exists regarding the design intent.

E. Performance Ratings: Unless otherwise noted, all scheduled equipment performance is based on an elevation of 7,200 feet above sea level. Adjust manufacturer’s ratings accordingly.

F. Structural Soundness: Products shall have structural integrity appropriate to the component and its application. Bases shall be rigid and shall keep all components in proper alignment. Structural integrity
shall be adequate for both rigging and final installation. Components shall not be loose, rattle, or vibrate unnecessarily in their final installed condition.

G. Corrosion Resistance: Equipment shall be of materials inherently corrosion resistant, or shall be finished with a corrosion-resistant finish suitable for the location in which the equipment is installed.

H. Touch-up: If the factory finish of any component is damaged prior to substantial completion, touch up to original condition per manufacturer’s recommendations.

I. Equipment Access Doors or Panels: Provide access doors and panels within equipment to ensure good access to all components requiring inspection, service or maintenance. Provide appropriate hardware. Equipment installed outdoors shall be weather-tight.

J. Fans: Statically and dynamically balanced, shaft first critical speed shall be above operating speed at design conditions.

K. Bearings: Grease lubricated or permanently lubricated.

L. V-Belt Drives: All components sized for 150% of motor HP, multiple belts shall be matched, fixed sheaves for motors 20 Hp and larger, adjustable sheaves for lower HP motors, all safety components for OSHA compliance (e.g., belt guard or other safety provisions) motor mounted on adjustable base. Provide a replacement sheave for each fixed sheave after T&B is complete. Include belt data in O&M manual. Gates Rubber Co, OAE.

1. Belt Guards: Rigidly constructed and attached, removable, galvanized steel, expanded mesh. Design to provide ready access to bearings.

M. Couplings: Provide coupling guard.

N. Motors and VFDs: See requirements described elsewhere in this spec section.

O. Drive Lines (starter or VFD, motor, coupling and shaft or v-belt drive and pulleys, and driven equipment): Coordinate with all suppliers and ensure all components are compatible to work as a system.

P. Coils: ARI rated, copper tubes mechanically expanded into aluminum fins, galvanized steel casing, drainable, pressure tested to 150% of working pressure but not less than 300 psi.

Q. Cooling Coil Drain Pans: Provide for all cooling coils, galvanized or stainless steel, double pitched with piped outlet. For units with more than one coil stacked, provide intermediate drain pans piped to the main drain pan.

R. Gas Burners: Natural gas fired, performance based on gas at 1000 Btu/SCF HHV but suitable for use with gas at 900 – 1050 Btu/SCF and 7 – 11 inches water column, factory installed and pressure tested gas train, all necessary safety and operating controls.

S. Filter Frames: Galvanized steel, provide wherever filters are specified.

T. Roof Curbs and Support Rails for Roof-Mounted Equipment: Roof curbs should generally be supplied with the equipment which the curb supports, and shall comply with the requirements of the National Roofing Contractors’ Association. Match curb to the requirements of the supported equipment. The roof pitch is indicated on the architectural drawings. If roof pitch exceeds the recommendations of the equipment manufacturer, provide a curb that will level the equipment. Factory fabricated, minimum 12-inch, structurally adequate for the load supported, not less than welded 18-gauge (16-gauge or
heavier for sizes more than 50-inches) galvanized steel with minimum 1-inch fiberglass insulation, 2 x 2 wood nailer, and with cant and step if required to match specified roof. Provide damper tray for un-ducted fan applications. Ship small curbs fully assembled; large curbs may be knocked down for shipment.

U. Electrical & Controls: Except where specifically noted, electric service to each component listed on the equipment schedules will be through a single electrical feed at the voltage indicated on the equipment schedules. Include all components, cabling and conduits to distribute power to all components which are factory supplied and mounted. Provide transformer(s) if required to serve unit-mounted components requiring electric service at voltages different from the main electric service, including controls components. Provide secondary overcurrent protection. Provide terminal strips for field-installed control wiring. Provide unit-mounted, unit-specific wiring diagrams on durable paper, attached to inside of control panel door or otherwise affixed to the unit. All electrical components shall be UL Listed or Recognized. All factory-installed electrical work shall comply with the NEC unless the overall unit is listed by an organization acceptable to the AHJ, and listed to a standard acceptable to the AHJ.

1. Where equipment includes an LCD or other, similar display for operator interface, display all information in English. Displays should be readily understandable and should not require the user to look up display codes in a reference manual.
2. Provide battery backup to retain all memory and programming, and to keep all clock-related functions powered through a 1-week power outage.
3. Controls interface with the FMS:
 a. Digital Inputs to FMS: 24V DC sourced from equipment.
 b. Digital Outputs from FMS: Equipment to have form C relays, max 250V DC, 2 A.
 c. Analog Inputs to FMS: 4-20 mA, 0-5V DC, or 0-10V DC sourced from equipment.
 d. Analog Outputs from FMS: 4-20 mA sourced from FMS.

2.2 ELECTRICAL COMPONENTS

A. General: Except as noted, all electrical products and equipment shall comply with the requirements of this section, whether field installed or factory installed. See “Product General Requirements” and “Installation General Requirements” in Parts 2 & 3 of this spec section for additional requirements.

B. Motors

1. General: Except as noted motors shall be horizontal, open drip-proof, 4-pole, 1750 RPM, rated per NEMA MG-1, with fabricated steel or cast iron casing, motor terminal box adequately sized for conductors one-size larger than specified, SS nameplate per NEMA MG-1-20.60, connection diagram attached to motor, compression lugs for power feeds and ground conductor, grease lubricated sealed ball bearings or roller bearings with standard grease fitting zerk and relief tapping, factory lubricated, dynamically balanced to no more than 50% of the NEMA allowable vibration limits. For motors powering V-belt drives, provide a cast iron or steel base with slide rail and adjustable belt tension device. Install motors and equipment on foundations and align as required. 40 deg C rise and total temperature rise of 65 deg C ambient.

 a. 3/4 hp and smaller: 115V, single phase, 60 Hz, split phase or permanent split capacitor (PSC), NEMA Type N or O, with built-in thermal overload protection.
 1) Multi-speed motors.

 b. 1 hp and greater: 3 phase, 60 Hz, squirrel cage induction type, NEMA design B, T-frame, with Class B or F insulation, lifting lugs, 150,000 hr L-10 bearings for direct-coupled applications, 50,000 hr L-10 bearings for belt-driven application with radial loads and pulley sizes per NEMA MG1-14.43. Service Factor: ODP motors shall be rated for 1.15 SF at 40°C or 1.0 SF at 65°C; TEFC motors shall be 1.0 SF.
1) Two speed motors: Provide with two separate windings.
2) Variable speed motors: Drive compatible per NEMA MG1-31, premium efficiency as specified below regardless of Hp, Class F insulation, minimum 5-year warranty.

2. Efficiency: Except as noted, motors shall be premium efficiency type, with nominal efficiencies not less than the following as per the Consortium on Energy Efficiency (CEE), and minimum power factor of 0.85:

<table>
<thead>
<tr>
<th></th>
<th>Open Drip-Proof (ODP)</th>
<th>Totally Enclosed Fan-Cooled (TEFC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td>1200 RPM</td>
<td>1800 RPM</td>
</tr>
<tr>
<td>1</td>
<td>82.5</td>
<td>85.5</td>
</tr>
<tr>
<td>1.5</td>
<td>86.5</td>
<td>86.5</td>
</tr>
<tr>
<td>2</td>
<td>87.5</td>
<td>86.5</td>
</tr>
<tr>
<td>3</td>
<td>89.5</td>
<td>89.5</td>
</tr>
<tr>
<td>5</td>
<td>89.5</td>
<td>89.5</td>
</tr>
<tr>
<td>7.5</td>
<td>91.7</td>
<td>91.0</td>
</tr>
<tr>
<td>10</td>
<td>91.7</td>
<td>91.7</td>
</tr>
<tr>
<td>15</td>
<td>92.4</td>
<td>93.0</td>
</tr>
<tr>
<td>20</td>
<td>92.4</td>
<td>93.0</td>
</tr>
<tr>
<td>25</td>
<td>93.6</td>
<td>93.6</td>
</tr>
<tr>
<td>30</td>
<td>93.6</td>
<td>94.1</td>
</tr>
<tr>
<td>40</td>
<td>94.1</td>
<td>94.1</td>
</tr>
<tr>
<td>50</td>
<td>94.1</td>
<td>94.5</td>
</tr>
<tr>
<td>60</td>
<td>95.0</td>
<td>95.0</td>
</tr>
<tr>
<td>75</td>
<td>95.0</td>
<td>95.0</td>
</tr>
<tr>
<td>100</td>
<td>95.0</td>
<td>95.4</td>
</tr>
<tr>
<td>125</td>
<td>95.4</td>
<td>95.4</td>
</tr>
<tr>
<td>150</td>
<td>95.8</td>
<td>95.8</td>
</tr>
<tr>
<td>200</td>
<td>95.4</td>
<td>95.8</td>
</tr>
</tbody>
</table>

4. If the Contractor proposes to furnish motors varying in horsepower and/or characteristics from those specified, he shall first submit his request for the change and shall then coordinate the change with all other parties (e.g. electrical contractor) and pay any costs associated with the change.

C. Motor Controllers

2. 3-Phase: Full voltage, non-reversing, electro-mechanical, combination circuit breaker and motor controller, UL Listed, NEMA rated, 460V, 65,000 AIC, minimum 50 VA 24V controls transformer with secondary overcurrent protection, suitable for operation at -4°F to +149°F and specified voltage -15% to +10%, adjustable solid state overloads initially set at Class 10, HOA switch, run indicator, two auxiliary contacts for remote monitoring of status, and enclosure for surface mounting. Cutler Hammer OAE.

 a. Provide enclosure appropriate to the location:
 1) NEMA-1 for indoor dry locations.
 2) NEMA-3R for outdoors.
 3) NEMA-4 for wet applications.
 4) NEMA-12 for dusty locations.
 5) Explosion-proof – where required.
b. Motor controllers factory mounted and wired on AC units, boilers, etc, may be definite purpose, and need not have all the features specified here.

2.3 ELECTRICAL WIRING AND CONTROL EQUIPMENT

A. Provide wiring and conduit as scheduled in Section 23 0549.

B. Coordinate with all disciplines to ensure that all necessary components of control work are included and fully understood.

2.4 IDENTIFICATION

A. Scope: Identify all equipment, ductwork, valves, piping, and control devices shown on the Drawings, identified in the equipment schedules, and indicated in these Specifications. Provide submittals for products and procedures used for identification.

B. Equipment: For all mechanical equipment supplied or installed under Division 23, provide an equipment identification tag or stencil unit number onto the equipment. Stencils shall be minimum 3-inch height, dark contrasting color, of a material suitable for the application.

1. For rooftop HVAC equipment, provide a permanently affixed, weather-resistant label to identify the areas served.

C. Valves: Provide each valve with a stamped metal tag secured to the valve. Tag shall indicate the valve number, service and function. Provide two sets of prints of drawings showing floor plan for each floor with all valves accurately located and labeled. Drawings shall be neat and easily readable. Provide a typed valve chart, listing the valve number, size, location, function, normal operating position, for each valve. List valves by system, i.e., domestic cold water, hot water, chilled water, etc. Tags shall be stamped brass 1-1/2" diameter, and secured to valves by heavy copper figure eight hooks, braided stainless steel wire anchor, or other approved means.

D. Ductwork: Identify ductwork at or near the fan with stenciled signs on insulated ductwork or engraved laminated plastic signs secured by rustproof screws on un-insulated ductwork. Sign shall identify air conditioning system or fan unit and area served.

E. Piping

1. Provide color-coded pipe labels indicating the service of the pipe and the direction of flow. Piping labels shall comply with ANSI Standard A13.1 regarding color coding and size of lettering. The following standardized color code scheme shall be used:

 c. Blue - Gaseous Materials of Inherently Low Hazard.

2. Labels shall be semi-rigid plastic identification markers. Labels shall "span-on" around pipe without the requirement for adhesive or bonding of piping sizes 3/4 inch through 5 inches. Labels for piping 6 inches and larger shall be furnished with spring attachment at each end of label. "SETMARK" Type SNA, 3/4 inch through 5 inch size and Type STR, 6 inches and larger, as manufactured by Seton Name Plate Corporation, Brady, or equivalent.

3. Labels shall be vinyl material with permanent adhesive for application to clear dry pipe and/or insulation jacketing. Pressure sensitive pipe tape matching the background color of the label
shall be placed over each end of the label and completely around the pipe.

4. For retrofit projects the system names shall match existing.

5. Attach pipe markers to lower quarter of the pipe on overhead horizontal runs and on the centerline of vertical piping where view is not obstructed.

6. Provide the following labels, with ANSI/OSHA color and banding for all piping systems as shown on the Drawings and as listed below:

<table>
<thead>
<tr>
<th>Service/Legend</th>
<th>Letter Color</th>
<th>Background Color</th>
<th>Tape Banding Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Cold Water</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Domestic Hot Water Return</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Soft Cold Water</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Soft Hot Water</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Industrial Cold Water</td>
<td>White</td>
<td>Green</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Fire Protection Water</td>
<td>White</td>
<td>Red</td>
<td>2" Red</td>
</tr>
<tr>
<td>Fire Auto Sprinkler</td>
<td>White</td>
<td>Red</td>
<td>2" Red</td>
</tr>
<tr>
<td>Fire Dry Standpipe</td>
<td>White</td>
<td>Red</td>
<td>2" Red</td>
</tr>
<tr>
<td>Fire Wet Standpipe</td>
<td>White</td>
<td>Red</td>
<td>2" Red</td>
</tr>
<tr>
<td>Fire Comb. Standpipe</td>
<td>White</td>
<td>Red</td>
<td>2" Red</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>White</td>
<td>Blue</td>
<td>2" Blue</td>
</tr>
<tr>
<td>Roof Drain</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Sanitary Sewer</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Storm Sewer</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Black</td>
</tr>
<tr>
<td>Steam, PSIG</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Black</td>
</tr>
<tr>
<td>Condensate Return, Gravity</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Black</td>
</tr>
<tr>
<td>Condensate Return, Pumped</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Black</td>
</tr>
<tr>
<td>Boiler Feed Water</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Black</td>
</tr>
<tr>
<td>Chilled Water Supply</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Chilled Water Return</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Heating Water Supply</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Heating Water Return</td>
<td>Black</td>
<td>Yellow</td>
<td>2" Yellow</td>
</tr>
<tr>
<td>Condensing Water Supply</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
<tr>
<td>Condensing Water Return</td>
<td>White</td>
<td>Green</td>
<td>2" Green</td>
</tr>
</tbody>
</table>

7. Locations: Label pipes at the following points on each piping system:

a. Adjacent to each valve in piping system.
b. At every point of entry and exit where piping passes through a wall.
c. On each pipe riser and junction.
d. At a maximum interval of 20 feet on pipe lines exposed and concealed above accessible
ceilings.
e. Adjacent to all special fittings (regulating valves, etc.) in piping systems.
f. At every access door.

8. Underground Piping: Provide a continuous, preprinted, bright colored, plastic ribbon cable marker with each underground pipe regardless of whether encased. Locate directly over buried pipe, 6 inches to 8 inches below finished grade. Marker tape used in conjunction with buried plastic piping systems shall be special detector type.

F. Control System Devices: All automatic controls, control panels, zone valves, pressure electric, electric pressure switches, relays and starters shall be clearly tagged and identified. Wording shall be identical to that on the control diagram in the Contract Drawings.

2.5 GENERAL CONSTRUCTION COMPONENTS

A. Roof Curbs and Equipment Support Rails

1. General: Factory fabricated, minimum 12-inch high, galvanized steel, configured to account for roof pitch where pitch exceeds 1/4-inch/ft or where required by manufacturer of supported equipment. Coordinate with roofer and provide cant and step if needed to match roof construction. Actual curb heights to be coordinated by contractor with roofing insulation height to maintain code-required height above final roofing elevation.

2. Roof Curbs: 1.5-inch fiberglass insulation with nominal 2" x 2" wood nailer. Provide damper tray where a damper is indicated. Thycurb TC, Greenheck, RPS, OAE.

3. Equipment Support Rails: Nominal 2" x 4" wood nailer. Thycurb TEMS, Greenheck, RPS, OAE.

B. Access Doors (ADs)

1. Steel frame and door, surface mounted, factory primed, 150° opening, flush, screw-driver operated cam lock, minimum 24” x 24” except as approved, but larger where required for proper access. Where ADs are installed in general construction with a pattern, match AD dimensions to this pattern. Milcor, Krueger, OAE.

a. Sheet Rock Wall or Ceiling: With drywall bead on frame, Milcor Style DW.
b. Plaster Wall or Ceiling: Milcor Style K.
c. Masonry Walls: Milcor Style M.
d. 1-hr and 2-hr rated walls: UL Listed for 1.5-hr Class B Fire Rating, self-closing and self-latching. Milcor Style UFR.
e. Suspended Ceilings: Milcor Style AT.
f. Fire Rated Suspended Ceilings: Milcor Style ATR.

C. Painting: Finish painting of mechanical systems and equipment will be under Spec Section 09 9100, “Painting,” unless equipment is specified to be provided with factory-applied finish coats.

2.6 MISCELLANEOUS PROVISIONS

A. Flow Diagrams: Provide half-size prints of each system flow diagram, including air handling, steam, chilled water, heating water, domestic water, domestic HW, etc. Mount framed under plexiglass, and locate either on the associated AHU or on a nearby wall. Incorporate any as-built revisions.
A. Cooperation with Other Trades: Refer to other parts of these Specifications covering the work of other trades which must be carried on in conjunction with the mechanical work so that the construction operations can proceed without harm to the Owner from interference, delay, or absence of coordination. Be responsible for the size and location of all openings, foundations, etc.

B. Trenching and Backfilling: Provide all excavation, trenching and backfilling required for the installation of the work of this division.

C. Manufacturer’s Instructions: Install all products in accordance with manufacturers’ recommendations and the requirements of any applicable listings. If manufacturers’ recommendations and/or requirements of applicable listings conflict with plans and specifications, report such conflicts to the Owner's Representative.

D. Field Measurements: Verify all dimensions and conditions governing the work. Examine adjoining work on which the work of this Division is dependent, and report any deficiencies.

E. Do not compromise the building structural, fire resistant construction or vapor barrier system.

F. Supports for Equipment and Systems: Foundations and structural supports for equipment will generally be provided by others. The contractor for this division shall provide supplementary supports as required to support equipment, distribution systems, and other components installed under this division. Prior to installing mechanical work, examine foundations and supports to ensure they are adequate to properly support the equipment. Provide all necessary foundations, structures, supports, inserts, sleeves, etc, for installation of mechanical and plumbing equipment, ductwork and piping, etc. Coordinate installation of such devices with all disciplines. Verify that the devices and supports are adequate as intended and do not overload the building structure.

G. Concealed or Buried Work: For work which is underground or which will be concealed by building construction, provide digital photographs to document the installation throughout the construction project, but not less than weekly. Include plans indicating where the photographs were taken. Notify the OR of when the work will be complete and provide OR a minimum five-day period to inspect the work after completion but prior to when it is backfilled or concealed by building construction.

H. Access Doors: Provide as required for access to valves, dampers, controls, or other items for which access is required for either operation or servicing. The type of access door shall be as required by the room finish schedule.

I. Alignment of Flexible Couplings: Flexible couplings between motors and driven equipment shall be aligned by a qualified service technician after the equipment is installed and ready for operation. Align equipment per manufacturer’s recommendations under operating conditions and temperature. Provide written certification that each device has been so aligned.

J. Lubrication: Provide all oil for the operation of all equipment until acceptance. Be responsible for all damage to bearings while the equipment is being operated by Contractor up to the date of acceptance of the equipment. Protect all bearings and shafts during installation and thoroughly grease shafts to prevent corrosion. Bearings for items of mechanical equipment shall be marked at each bearing location as to whether the bearing is a sealed type or relubricable type unit.

K. Tests: All tests shall be conducted in the presence of the designated and authorized Owner's Representative. Notify the Owner’s one week in advance of all tests. Requirements for testing are specified under the sections covering the various systems. Provide all necessary equipment, materials, and labor to perform the required tests.
L. Protection of Material and Equipment:

1. Protect all work, materials and equipment furnished and installed under Division 23, whether incorporated in the building or not.
2. All items of mechanical equipment shall be stored in a protected weatherproof enclosure prior to installation within the building, or shall be otherwise protected from the weather in a suitable manner as approved.
3. Protect all work and be responsible for all damage done to property, equipment and materials. Coordinate material storage with the Owner’s Representative.
4. Pipe and duct openings shall be closed with caps or plugs, or covered to prevent lodgment of dirt or trash during the course of installation. Plumbing fixtures shall not be used by the construction forces. At the completion of the work clean and polish fixtures, equipment and materials prior to turning them over to the Owner.

3.2 DRAWINGS

A. The drawings show the general arrangement of the piping, ductwork, equipment, etc. Follow them as closely as actual building construction and work of other trades will permit. Where discrepancies occur between Plans and Specifications, the more stringent shall govern. All Contract Documents shall be considered as part of the work. Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings and accessories, which may be required, and no attempt has been made to do so. Rather, the drawings convey the general design intent. Investigate the structural and finish conditions affecting the work and arrange the work accordingly, providing fittings, valves, and accessories as required to meet such conditions. Show any such changes on the Record Drawings.

B. Should any doubt or question arise in respect to the true meaning of the drawings or specifications, submit an RFI.

C. Install equipment, piping, ductwork, and electrical systems with proper clearance for operation, service, and maintenance, including minimum clearances required by applicable codes, manufacturer’s installation instructions, etc. Include proper clearance in front of and above electrical equipment as defined by the National Electric Code (NEC). Piping and ductwork systems shall not be routed through or above electrical equipment rooms, telecommunications rooms, elevator machine rooms, or electrical equipment spaces within mechanical equipment rooms.

D. Arrange all concealed mechanical systems carefully to fit within the available space without interference with adjacent structural and electrical systems. Make all necessary provisions for penetrations of piping and ductwork, including sleeves and blockouts in structural systems. The exact location of all exposed mechanical systems, including grilles, registers, and diffusers; access doors; sprinkler heads; piping and ductwork exposed within finished areas; and other equipment and devices as applicable, shall be coordinated with the Architect, who shall have final authority for the acceptance of the work as it relates to the aesthetic design for the facility.

3.3 CONCRETE BASES AND HOUSEKEEPING PADS

A. Concrete bases and housekeeping pads shall be installed under all pieces of mechanical equipment unless specifically deleted by the Specifications or Drawings.

B. Be responsible for the accurate dimensions of all pads and bases and furnish and install all vibration isolators, anchor bolts, etc.

C. Provide concrete housekeeping pad foundations for all floor mounted equipment installed under this
section unless otherwise shown on the Drawings. All concrete bases and housekeeping pads shall conform to the requirements specified under Division 3, Concrete, portions of these Specifications. Pad foundations shall be 4 inches high minimum, unless otherwise indicated on the Drawings. Chamfer edges shall be 1 inch. Faces shall be free of voids and rubbed smooth with carborundum block after stripping forms. Tops shall be level. Provide dowel rods in floor for lateral stability and anchorage.

D. Equipment anchor bolts shall be set in a galvanized pipe or sheet metal sleeves 1 inch larger than bolt diameter. Anchor bolts shall be high strength steel J-shape. Anchor bolt design shall be arranged and paid for by the Contractor.

E. Machinery bases, bed plates, sole plates, or vibration isolation units shall be carefully aligned, shimmed, leveled, and then grouted in place with commercial non-shrink grout. When a flexible coupling is employed as a part of the drive train, the coupling shall be aligned before the machinery base is grouted.

3.4 PRESSURE RELIEF DEVICES

A. Refrigerant pressure relief devices and fusible plugs shall be installed with piping to a safe location in accordance with ANSI/ASHRAE Standard 15. Discharge shall be to atmosphere at a location not less than 15 feet above the adjoining ground level and not less than 20 feet from any window, ventilation opening, or exit from any building. Discharge line sizing shall conform to ANSI/ASHRAE Standard 15-1994.

B. Each discharge pipe shall be equipped with a drip leg capable of holding 1 gallon of liquid. The drip leg shall include a manual drain valve.

3.5 INSTALLATION CHECK

A. An experienced, competent, and authorized representative of the equipment listed below shall visit the site of the work and inspect, check, adjust if necessary, and approve the installation for the equipment listed below. The equipment supplier’s representative shall revisit the job site as often as necessary until all trouble is corrected and the equipment installation and operation is approved and accepted.

B. Each equipment supplier’s representative shall furnish a written report certifying that the equipment (1) has been properly installed and lubricated; (2) is in accurate alignment; (3) is free from any undue stress imposed by connecting piping or anchor bolts; and, (4) has been operated under full load conditions and that it has operated satisfactorily.

C. Equipment requiring installation check includes the following:
 Air Handling Units
 Facility Management System (See Specification Section 23 0900)

3.6 OPERATION PRIOR TO ACCEPTANCE

A. Operation of equipment and systems for the benefit of the Owner prior to substantial completion will be allowed provided that a written agreement between the Owner and the Contractor has established warranty and other responsibilities to the satisfaction of both parties.

B. Operation of equipment and systems for the benefit of the Contractor, except for the purposes of testing and balancing, will not be permitted without a written agreement between the Owner and the Contractor establishing warranty and other responsibilities.

3.7 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS
A. At completion of the project provide two complete bound sets of the following documents, along with two CDs containing searchable PDFs of these documents. Organize bound information in a logical fashion with a table of contents and tabs for the different sections. Organize PDFs in a logical fashion with bookmarks to assist the operating personnel in retrieving desired data. Provide minimum two 1-hour sessions to instruct Owner’s facility personnel in how to find information in the bound O&Ms and the PDFs. Take attendance and submit the attendance list to the Owner’s Representative. Include the following:

1. Approved Submittals.
2. Test reports.
3. O&M manuals and instructions covering all equipment supplied under this Division, with all non-applicable information crossed out. Clearly identify all required routine maintenance. Include parts lists.
4. A master Lubrication Chart listing each piece of equipment, the recommended oil or grease, and the recommended frequency of lubrication.
5. The names and addresses of at least one service agency capable of providing required maintenance for each item of equipment supplied.
6. Complete temperature control diagrams including control descriptions, system sequence of operation, operating instructions, control system maintenance and calibration information, wiring diagrams, and all control setpoints. See Section 23 0900 for additional requirements.

B. See Division 1 for additional requirements concerning manuals, manual distribution, and maintenance materials.

C. Submit O&M manuals for review and distribution to the Owner not less than two weeks prior to the date scheduled for O&M instructions as specified.

D. Demonstrate proper system operation to the owner’s operating staff. Provide the services of the contractor and subcontractors (e.g., mechanical, T&B, temperature control, etc), as required to properly demonstrate system operation.

E. Provide the necessary skilled labor and helpers to operate the mechanical systems and equipment for a period of 2 days of eight hours each. During this period, instruct the owner’s facility staff fully in the operations, adjustment and maintenance of all equipment provided. Provide at least two weeks advanced notice, with a written schedule of each training session, the subject of the session, the Contractors’ Representatives who plan to attend the session, and the time for each session. Take attendance and submit attendance sheets to the Owner’s Representative.

3.8 RECORD DRAWINGS

A. See Division 1, for additional requirements associated with Project Record Drawings.

B. Maintain a full-size set of marked-up prints showing the installed location and arrangement of all work under this division, and in particular where changes were made during construction. Keep record drawings accurate and up-to-date throughout the construction period. Owner’s Agents may request to review record drawings during construction and in conjunction with review and approval of monthly pay requests. Include copies of all addenda, RFIs, bulletins, and change orders neatly taped or attached to record drawing set. At the completion of the project send the Engineer full-size plans clearly showing all changes from the original design marked up in red so as to facilitate the Engineer incorporating these changes into the Engineer’s CADD files. Forward record drawings to the Owner’s Representative prior to submitting a request for substantial completion.

3.9 SITE VISITS AND OBSERVATION OF CONSTRUCTION
A. The Engineer may make periodic visits to the project site at various stages of construction in order to observe the progress and quality of various aspects of the work so as to determine if such work is proceeding in general accordance with the Contract Documents. This observation will not release the Contractor from his responsibility to supervise, direct, and control all construction work and activities. The Engineer has no authority over, or responsibility for means, methods, techniques, sequences, or procedures of construction or for safety precautions and programs, or for failure of the Contractor to comply with applicable laws, regulations, or codes.

B. Prior to substantial completion, request that the Engineer provide a final observation visit. Complete the attached "Final Observation Checklist," and include it with this request. For any items that are not applicable, mark them "N/A."

3.10 PROJECT CLOSEOUT

A. Submit written certification that all work complies with the specifications and applicable codes. Submit certifications and acceptance certificates including proof of delivery of record drawings, O&M manuals, spare parts required, and equipment warranties.

END OF SECTION
In advance of requesting a final mechanical observation for installed mechanical systems, please check all items that have been completed. For all items not applicable to this project mark N/A.

PLUMBING/PIPING

_____ 1. All plumbing fixtures are set, sealed and cleaned.

_____ 2. All domestic and HVAC pipe systems are insulated.

_____ 3. All pipe systems are identified with specified labels and directional arrows.

_____ 4. Floor sinks and drain grates are cleaned and debris removed.

_____ 5. Valve tags are installed.

_____ 6. Special equipment (water softeners, water heaters, piping systems, etc.,) have been checked and put into service.

_____ 7. Medical gas systems have been checked and certified.

_____ 8. Special piping systems have been cleaned and pressure tested.

 _____ Fuel Handling
 _____ Compressed Air
 _____ Natural Gas
 _____ Other

 _____ Process Piping
 _____ Nitrogen
 _____ Vacuum
 _____ Argon
 _____ Medical Gas
 _____ Other

_____ 9. Limestone chips have been installed in acid dilution sumps.

_____ 10. Plumbing/piping connections have been completed to Owner-furnished equipment and equipment furnished by other Contractors/Subcontractors.

_____ 11. Exterior wall hydrants have been cleaned.

_____ 12. Concrete collars have been installed at clean-out to grade, valve box, or other specified plumbing items.

_____ 13. Drains and relief lines from plumbing and HVAC equipment have been installed and secured in a proper manner.
14. All plumbing equipment and areas of equipment have been cleaned and debris removed.
15. All plumbing equipment required by the Specifications has been identified and/or numbered.
16. Domestic water systems sterilization has been completed.
17. Refrigerant piping/system has been charged and tested.
18. Strainers/suction diffusers have been cleaned.
19. Backflow preventers have been tested.
20. Air has been vented from all coils and systems.
21. Water treatment systems have been charged and tested.
 - Chilled Water
 - Condenser Water
 - Hot Water
 - Steam/Condensate
22. Ethylene glycol system has been charged with correct mixture and tested.
23. Water systems have been cleaned (X) and pressure tested (P)
 - Chilled Water
 - Condenser Water
 - Hot Water
 - Non-potable Water
 - Steam
 - Domestic Hot Water
 - Condensate
 - Domestic Cold Water
 - Fire Protection
 - Acid Waste and Vent
 - Sanitary Sewer and Vent
 - Heat Recovery Piping
 - Roof and Overflow Drains
 - Other (list)
24. PRVs have been adjusted (water, steam, gases).

FIRE PROTECTION
1. Fire protection piping is completed.
2. Fire protection system has been certified by the Fire Marshal's office.
3. All electrical interlocks between the fire sprinkler components and the fire panel have been checked for operation.
4. Spare sprinkler head, wrench and cabinet are installed.

HVAC - EQUIPMENT AND DUCTWORK
1. All ductwork has been sealed and insulated.
2. Return air paths and transfer openings have been verified.
Air handlers have been cleaned inside and out and construction filters removed and replaced with final filters.

All air handling equipment has been started and operated for the specified time.

All equipment isolators have been adjusted for specified deflection.

All VAV boxes, fan coils, or fan powered boxes are completed and operational.

All pump shafts and couplings have been aligned.

Ductwork, coils, housing, diffusers, registers and grilles have been cleaned.

Boilers have been fired and certified by the supplier.

Cooling towers have been started and inspected by the supplier.

Chillers have been charged, started and certified for operation by the supplier.

Fire dampers are accessible and fully operational.

All HVAC equipment has been lubricated.

HVAC equipment has been labeled in accordance with the Specifications.

Duct pressure testing is complete and accepted.

"HAZARDOUS AREA" signs installed where applicable.

Belt guards installed where applicable.

Variable frequency drives have been tested by the manufacturer’s representative and certified to be in compliance with all of the specified requirements.

Testing and balancing has been completed, and deficiencies noted have been corrected.

Special systems have been started and tested, such as: Humidification, laboratory hoods, kitchen hoods, and Owner-furnished items.

Temperature control panels and devices have been labeled in accordance with the Specifications.

All control dampers close completely and edge and blade seals form tight seal.

All control valves have been piped as required by the Drawings.

Controls systems are completed and all control points are operating and recording properly.
5. All temperature control tubing and wiring is installed and secured in accordance with the Specifications and the electrical code.

6. Smoke removal fans and/or smoke detectors have been tested for operation and shutdown.

7. Freezestats have been tested ensuring fan shutdown and full damper closure.

8. Operator training for temperature controls has taken place.

9. Refrigerant sensors and equipment room shutdown have been tested.

GENERAL ITEMS

The following specified items have been submitted:

1. Record Drawings (to be submitted prior to final payment to the Contractor).

2. Operation and maintenance manuals.

3. Manufacturer’s representative installation check and certification submitted (see list of equipment, Section 23 0500).

4. Testing and balancing reports.

5. Test kits furnished to Owner.

 Flow Measuring Devices
 Flow Balance Valves
 Flow Control Devices

6. Temperature control schematics and sequence of operation.

7. Wall-mounted lubrication, valve, and temperature control charts have been installed.
TO: BRIDGERS & PAXTON CONSULTING ENGINEERS

PROJECT: __

We hereby submit for your consideration the following product instead of the specified item for the above project:

Section: ____________ Page: ______________ Paragraph/Line: ____________ Specified Item: ____________

Proposed Substitution: __

Attach complete product description, drawings, photographs, performance and test data, and other information necessary for evaluation. Identify specific Model Numbers, finishes, options, etc.

1. Will changes be required to building design in order to properly install proposed substitutions? YES ☐ NO ☐
 If YES, explain: __

2. Will the undersigned pay for changes to the building design, including engineering and drawing costs, caused by requested substitutions?
 YES ☐ NO ☐

3. List differences between proposed substitutions and specified item.
 Specified Item Proposed Substitution
 __
 __

4. Does substitution affect Drawing dimensions? YES ☐ NO ☐

5. What affect does substitution have on other trades? __

6. Does the manufacturer's warranty for proposed substitution differ from that specified? YES ☐ NO ☐
 If YES, explain: __

7. Will substitution affect progress schedule? YES ☐ NO ☐
 If YES, explain: __

8. Will maintenance and service parts be locally available for substitution? YES ☐ NO ☐
 If YES, explain: __

9. Does proposed product contain asbestos in any form? YES ☐ NO ☐

SUBMITTED BY: Firm: ___________________________ Date: ____________
Address: __
Signature: ____________________________________ Telephone: _______________________

For Engineer's Use Only

Accepted __________________ Not Accepted __________________ Received Too Late __________
By: __________________________ Date: ___________________
Remarks: ________________________________

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

COMMON WORK REQUIREMENTS FOR HVAC
LICENSE AGREEMENT FOR CADD DATABASE OR BIM MODEL

PROJECT: __

LICENSE GRANT: Contractor is granted use of the CADD Database or BIM Model (Database/Model) for the indicated project for the specific purpose of preparing submittal documents for this Project. No other use of the Database/Model is granted. Title to the Database/Model is not transferred to the Contractor. The Database/Model may be of value to the Contractor in preparing submittals, but use of the model does not relieve the contractor of the requirement to verify measurements in the field.

COPYING RESTRICTIONS: Contractor may copy the Database/Model in whole or in part, but only for backup and archival purposes or for use by the Contractor’s Subcontractors. Contractor agrees to ensure that any entities that receive the Database/Model from Contractor, either in whole or in part, comply with the terms and conditions of this agreement. Contractor shall safeguard the Database/Model from falling into the hands of parties other than Subcontractors with a legitimate need for it.

WARRANTY: Bridgers & Paxton (B&P) offers this Database/Model without warranty and specifically without express or implied warranty of fitness. If Contractor chooses to use the Database/Model, then he does so at his own risk and without any liability or risk to B&P.

INDEMNITY: Contractor shall to the fullest extent permitted by law, defend, indemnify and hold harmless the Owner, Architect, B&P, their employees and agents from all claims, damages, losses, and attorney fees arising out of or resulting from the use of the Database/Model.

ACKNOWLEDGMENT: Contractor acknowledges that (s)he has read this Agreement, understands it, and agrees to be bound by its terms and conditions.

CONTRACTOR’S REPRESENTATIVE

Signature: ____________________________ Company Name: ____________________________

Name: ________________________________ Address 1: ________________________________

Title: ________________________________ Address 2: ________________________________

Date: ________________________________
SECTION 230503 - TRENCHING AND BACKFILLING

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and the General Requirements.

1.2 SCOPE OF WORK

A. The work in this section includes the furnishing of all labor, materials, equipment, transportation, hauling and services required in connection with the excavation, backfilling, compaction, grading and removal of earth from the site required for the installation of the HVAC work specified herein under Division 23.

1.3 SAFETY REGULATIONS

A. All work performed under this Section shall conform to the requirements of the General Conditions, Supplemental General Conditions and Safety Requirements for this type of work.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

3.1 TRENCHING AND BACKFILLING

A. General Excavation: The Contractor shall perform all excavation of every description and of whatever substances encountered, to the depths indicated on the drawings or as otherwise specified. During excavation, material suitable for backfilling shall be piled in an orderly manner a sufficient distance from the banks of the trench to avoid overloading and to prevent slides or cave-ins. All excavated material not required or suitable for backfill shall be removed and wasted. Berming and grading shall be done as may be necessary to prevent surface water from flowing into trenches or other excavations, and any water accumulating therein shall be removed by pumping or by other approved methods. Sheeting and shoring shall be done as required for the protection of the work and for the safety of personnel.

B. Trench Excavation: Trenches shall be of adequate width for the proper laying of the pipe, and the banks shall be as nearly vertical as practicable and safe for workmen. The bottom of the trenches shall be accurately graded and bedded to provide uniform bearing and support for each section of the pipe at every point along its entire length. Bell holes and depressions for joints shall be dug after the trench bottom has been graded, and bedded in order that the pipe rests upon the prepared bottom for as nearly its full length as practicable. Care shall be taken not to excavate below the depths indicated. Where rock excavation is required, the rock shall be excavated to a minimum overdepth of 4 inches below the trench depths indicated on the drawings or specified. Overdepths in the rock and common excavation shall be backfilled with coarse sand, fine gravel, or otherwise suitable material. Whenever wet or otherwise unstable soil that is incapable of properly supporting the pipe is encountered in the bottom of the trench, such soil shall be removed to the depth required and the trench backfilled to the proper grade with coarse sand, fine gravel, or other suitable materials, as hereinafter specified.

C. The Contractor shall move trucks and equipment on prescribed roads and keep the roads free from mud, dirt and spillage.
D. If additional material is needed for fill on the project, it shall be furnished by the Contractor.

E. Bracing and Bulkheading: In all excavation work the Contractor shall provide necessary underpinning, bracing, or bulkheading to safeguard the work, the present structures, workmen, the public, and the property, and shall assume all responsibility in connection therewith.

F. Backfilling: The trenches shall not be backfilled until all required pressure tests are performed and until the utilities as installed conform to the requirements specified. The trenches shall be carefully backfilled with materials approved for backfilling; free from large clods of earth or stones. The entire depth of trench shall be backfilled in layers, and each layer shall be spread evenly, wetted to optimum moisture and thoroughly mixed to uniform consistency and compacted to the required maximum density obtainable as the same soil, as determined by ASTM D698.

G. All imported fill required under this section will be furnished by the Contractor. Imported fill will be base course material approved for use by the State Highway Department.

H. Fill material shall be free from trash, lumber or any type of debris which may be detrimental to producing the required density in the fill.

I. The earth beneath all sidewalks and concrete slabs shall be backfilled and compacted to at least 8” below any gravel or sub-base material before the placement of gravel or other base material and shall be coordinated with requirements contained within Division 2.

J. All piping not encased in concrete shall be bedded in sand or fine gravel, without rocks or other foreign material. Bedding material shall be placed around the pipe in accordance with manufacturer’s recommendations. The bedding material shall be distributed around pipe to assure full consolidation.

K. In grass and planted areas, the Contractor shall backfill his excavation to approximately 8” below finished grade. Contractor shall coordinate backfill requirements contained in Division 2.

L. Provide density test for trench, backfill in accordance with Division 2 requirements.

END OF SECTION
SECTION 230504 - PIPE AND PIPE FITTINGS

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures furnished under Division 23 shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.

1.3 SUBMITTAL DATA

A. Contractor shall furnish complete submittal data for all piping materials, including manufacturer's specifications, certifications, class, type and schedule. Submittal data shall additionally be furnished for pipe hangers and supports, pipe sleeves including sealing and fire safing materials and installation.

PART 2 - PRODUCTS

2.1 PIPE AND PIPE FITTINGS

A. Piping system materials shall be furnished as specified under the Sections describing the various piping systems. Pipe fittings shall be compatible with the piping systems in which they are installed.

B. Pipe fittings for steel piping systems shall be weld, screwed or mechanical couplings. Butt weld fittings shall be manufactured by Weld-Bend, Laddish, or equivalent, standard or extra strong as specified in the applicable Sections of this Specification, conforming to ANSI Standard B16.9. All 90° weld elbows shall be long radius unless otherwise specified. Wherever tee connections are required in the piping system, manufacturer's straight or reducing tees shall be utilized. The use of fittings formed from welded pipe or pipe sections will not be permitted. Forged steel "Weld-O-Lets", "Branch-O-Lets", and "Thred-O-Lets", as manufactured by Bonney Forge or equivalent, may be utilized for welded branch and tap connections up to one-half the size of the main. Forged steel half-couplings conforming to ANSI B16.11 may be used for drain, vent and gauge connections. Flanges shall be forged steel weld neck or slip-on, raised face, Class 150 or 300 as specified in the applicable Sections of this Specification with full face or ring type non-asbestos gasket material suitable for the application.

C. Socket weld fittings shall be Schedule 40, 2000 pound or Schedule 80, 3000 pound construction, as specified in the applicable Sections of this Specification, conforming to ANSI B16.11, as manufactured by Grinnell or equivalent.

D. Screwed fittings shall be Class 150 standard or Class 300 extra heavy, black or galvanized, malleable iron or cast iron, as specified in the applicable Sections of this Specification, as manufactured by Grinnell or equivalent. Screwed malleable iron fittings shall conform to ANSI B16.3 and cast iron screwed fittings
shall conform to ANSI B16.4. Bushing reduction of a single pipe size or use of close nipples will be permitted.

E. Pipe couplings and fittings as manufactured by Victaulic, Tyco-Grinnell, or equivalent may be utilized for steel piping systems in lieu of butt weld fittings, as specified in the applicable Sections of this Specification. Couplings shall consist of ductile or malleable iron housing, with gasket, and nuts and bolts required to secure the unit. Gaskets shall be molded of synthetic rubber or other compound as recommended by the manufacturer for the fluid application including required pressure and temperature operating ranges. Fittings utilized in conjunction with Victaulic type piping system shall be manufacturer's full flow cast iron, malleable iron, or steel fittings with grooves designed to accept mechanical couplings. All piping shall be prepared in accordance with manufacturer's specifications, furnished for factory or field installed roll grooves without metal removal. Square cut grooves will not be permitted. Assembly of couplings, fittings and piping shall be in accordance with manufacturer's published instructions. Gaskets, pipe ends, fittings and coupling housings shall be properly lubricated with water-based type lubricant furnished by the coupling manufacturer. Couplings shall be Victaulic Style 07 "Zero-Flex" or equivalent, rigid coupling through 24" size. For applications in conjunction with connections to items of equipment such as boilers, water chillers, cooling towers, etc., Victaulic Style 75 or equivalent couplings shall be utilized. Adapter connections between Class 125 and 150 flanged components and grooved piping system shall be made utilizing Victaulic Style 741 and 742 or equivalent flange adapter. Branch and tap connections up to one-half the size of the main may be made utilizing Victaulic Style 72 or equivalent outlet couplings and Style 920 or 921 or equivalent branch outlet connections.

F. Pipe fittings for copper piping system shall be wrought copper conforming to ANSI B16.22. Cast brass fittings conforming to ANSI B16.23, may be utilized for sanitary drainage, waste and vent systems, HVAC gravity condensate drainage system, and other non-pressure applications.

G. Bronze flanges, Class 125 and Class 150, shall conform to ANSI B16.24.

H. Cast iron fittings for cast iron sanitary soil, waste, and venting piping systems shall be as specified in Division 22.

I. Ductile iron fittings for ductile iron water service piping systems shall be as specified in Division 22.

2.2 FLOOR, WALL AND CEILING PLATES

A. Where uncovered, exposed pipes pass through finished floors, finished walls, or finished ceilings, they shall be fitted with chromium plated spun brass escutcheon plates. Plates shall be large enough to completely close the hole around the pipe, and shall be not less than 1-1/2" or more than 2-1/2" larger than the diameter of the pipes. All plates shall be securely held in place.

2.3 UNIONS

A. Piping 2-1/2" and larger shall be provided with bolted flange union connections. Weld flanges and bolting shall conform to ANSI B16.5. Bronze flanges shall conform to ANSI B16.24. Flange class shall be as specified in the applicable Sections of the Specifications.

B. Malleable iron grooved joint unions with brass to iron seats, Class 125, 250, or 300, as required by the application and compatibility requirements with the piping system fitting classification, conforming to MSS SP-77 and ANSI B16.39, shall be provided in piping systems 2" and smaller. Copper unions conforming to ANSI B16.22 shall be provided in copper piping systems. Union connections shall be installed at all coils, control valves, equipment connections, and at other locations shown on the drawings, and required for proper system operation and maintenance.
2.4 DIELECTRIC FITTINGS

A. Dielectric insulating fittings shall be provided to connect dissimilar metals, such as copper tubing to ferrous metal pipe. Connections 2" and smaller shall be threaded dielectric union conforming to ANSI B16.39. Connections 2-1/2" and larger shall be flange union with dielectric gasket and bolt sleeves, conforming to ANSI B16.42. Insulating fittings will not be required between bronze valves and copper piping, unless otherwise specified.

2.5 PIPE HANGERS AND SUPPORTS

A. All piping shall be rigidly supported from the building structure by means of hanger assemblies properly selected and sized for the application in accordance with the manufacturer’s recommendations and specifications. Pipe hangers shall be Grinnell, B-Line, Erico, or equivalent.

B. No attempt has been made to show all required piping supports in all locations, either on the drawings or in the details. The absence of pipe supports and details on any drawing shall not relieve the Contractor of the responsibility for furnishing and installing proper hangers and supports throughout.

C. Piping hangers shall be spaced on the scheduled maximum spacing and shall have hangers not more than one foot from each elbow and other changes in direction or elevation. Provide additional hangers and supports at valves, strainers, in-line pumps adjacent to flexible connections, and other required heavy components. Piping system shall be installed in an approved manner and shall not overload the building structural frame. Contractor shall provide additional hangers and miscellaneous steel supports as may be required to distribute the piping system load over multiple structural members where required or directed. Maximum allowable spacing for steel and copper piping, other than fire protection piping, shall be as scheduled in Table No. 1.

TABLE NO. 1
MAXIMUM SUPPORT SPACING FOR STEEL AND COPPER PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Steel Piping</th>
<th>- Maximum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>5'-0"</td>
</tr>
<tr>
<td>3/4" and 1"</td>
<td>6'-0"</td>
</tr>
<tr>
<td>1-1/4" through 2"</td>
<td>8'-0"</td>
</tr>
<tr>
<td>2-1/2" through 6"</td>
<td>10'-0"</td>
</tr>
<tr>
<td>8" through 12"</td>
<td>12'-0"</td>
</tr>
<tr>
<td>14" and larger</td>
<td>[16'-0"] [12'-0"]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copper Piping</th>
<th>- Maximum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>5'-0"</td>
</tr>
<tr>
<td>3/4" through 2"</td>
<td>6'-0"</td>
</tr>
<tr>
<td>2-1/2" through 4"</td>
<td>8'-0"</td>
</tr>
<tr>
<td>5" and larger</td>
<td>10'-0"</td>
</tr>
</tbody>
</table>

D. Round rods supporting the pipe hangers shall be of the minimum dimensions as scheduled in Table No. 2. Hanger rods shall be hot-rolled steel, ASTM A-36 or A575, galvanized, all-thread. Provide for controlling level and slope by turnbuckles or other approved means of adjustment and incorporate locknuts.
HANGER ROD SIZE FOR PIPE HANGER SUPPORTS

- 1/2" to 2" pipe - 3/8" rod
- 2-1/2" to 3" pipe - 1/2" rod
- 4" to 5" pipe - 5/8" rod
- 6" pipe - 3/4" rod
- 8" to 12" pipe - 7/8" rod
- 14" and 16" pipe - 1" rod
- 18" and 20" pipe - 1-1/4" rod
- 24" and 30" pipe - 1-1/2" rod

E. Cast iron soil, waste and vent piping shall be provided with steel clevis type hangers. Grinnell Fig. 590 at each pipe joint and at each fitting.

F. Hanger spacing for plastic piping system support shall be as scheduled below in Table No. 3 for PVC and CPVC and Table No. 4 for PVDF piping, based on pipe full of liquid with specific gravity of 1.0. See Table No. 5 for specific gravity correction factors. Piping may be continuously supported with a "V" or "U" shaped support made of metal or heat resistant approved plastic material. Hanger supports shall be in accordance with piping system manufacturer's recommendations.

TABLE NO. 3A
MAXIMUM SUPPORT SPACING FOR PVC AND CPVC PIPING SYSTEMS

SCHEDULE 40 PVC - MAXIMUM SPACING
OPERATING TEMPERATURE (DEGREE F)

<table>
<thead>
<tr>
<th>Size</th>
<th>PVC AND CPVC</th>
<th></th>
<th>CPVC</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 & less</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>1/2" to 3/4"</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>1" to 1-1/4"</td>
<td>6</td>
<td>5.5</td>
<td>5.5</td>
<td>4.5</td>
<td>3.5</td>
<td>4</td>
<td>3.5</td>
<td>3</td>
</tr>
<tr>
<td>1-1/2" to 2"</td>
<td>6</td>
<td>6</td>
<td>5.5</td>
<td>4.5</td>
<td>3.5</td>
<td>4.5</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>2-1/2" to 3"</td>
<td>7.5</td>
<td>7</td>
<td>6.5</td>
<td>5.5</td>
<td>4.5</td>
<td>5.5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4"</td>
<td>8</td>
<td>7.5</td>
<td>7</td>
<td>6</td>
<td>4.5</td>
<td>6</td>
<td>5.5</td>
<td>4.5</td>
</tr>
<tr>
<td>5" and 6"</td>
<td>8.5</td>
<td>8</td>
<td>7.5</td>
<td>6.5</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>8"</td>
<td>9.5</td>
<td>9</td>
<td>8.5</td>
<td>7</td>
<td>5.5</td>
<td>7.5</td>
<td>6.5</td>
<td>5.5</td>
</tr>
<tr>
<td>10"</td>
<td>10</td>
<td>9</td>
<td>8.5</td>
<td>7</td>
<td>5.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12"</td>
<td>10.5</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

TABLE NO. 3B
MAXIMUM SUPPORT SPACING FOR PVC AND CPVC PIPING SYSTEMS

SCHEDULE 80 PVC - MAXIMUM SPACING
OPERATING TEMPERATURE (DEGREE F)

<table>
<thead>
<tr>
<th>Size</th>
<th>PVC AND CPVC</th>
<th></th>
<th>CPVC</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 & less</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>1/2"</td>
<td>6</td>
<td>6</td>
<td>5.5</td>
<td>4.5</td>
<td>3.5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>3/4"</td>
<td>6.5</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>3.5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>1" to 1-1/4"</td>
<td>7</td>
<td>6.5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>1-1/2" to 2"</td>
<td>7.5</td>
<td>7</td>
<td>6.5</td>
<td>5.5</td>
<td>4</td>
<td>4</td>
<td>3.5</td>
<td>3</td>
</tr>
</tbody>
</table>

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton
TABLE NO. 4
MAXIMUM SUPPORT SPACING FOR PVDF PIPING SYSTEMS

SCHEDULE 80 PVDF - MAXIMUM SPACING
OPERATING TEMPERATURE (DEGREE F)

<table>
<thead>
<tr>
<th>Size</th>
<th>70 & less</th>
<th>100</th>
<th>140</th>
<th>180</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3/4"</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1"</td>
<td>3.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>4</td>
<td>3.5</td>
<td>3.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>4.5</td>
<td>4</td>
<td>4</td>
<td>3.5</td>
<td>3.5</td>
<td>3</td>
</tr>
<tr>
<td>2"</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>4.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>3"</td>
<td>5.5</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4"</td>
<td>6</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

TABLE NO. 5
SPECIFIC GRAVITY CORRECTION FACTOR FOR PLASTIC PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Specific Gravity:</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.4</th>
<th>1.6</th>
<th>2.0</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction Factor:</td>
<td>1.0</td>
<td>0.98</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
</tr>
</tbody>
</table>

G. Fire protection system shall be supported in strict accordance with the requirements contained in the applicable NFPA pamphlets and as specified in Division 21, Fire Suppression Systems.

H. Hangers, clamps and other support materials in contact with copper piping shall be copper or copper plated to prevent electrolysis. Hangers for copper piping shall be copper plated adjustable ring type Grinnell Fig. CT-269, adjustable swivel ring, Grinnell Fig. CT69, Fig. CT-65 or adjustable clevis type or equivalent. Provide minimum 10 mil plastic wrap around copper pipe at any ferrous point of attachment including trapeze hangers, clamps, and other supports.

I. Hangers for steel shall be steel clevis type hangers, Grinnell Fig. 260 or equivalent.

J. Where piping is installed side by side, the Contractor may support the piping utilizing trapeze type hanger assemblies. Horizontal trapeze member shall be galvanized steel channel, not less than 1-1/2" x 1-1/2" x 12" gauge, or Unistrut. Contractor shall provide heavier steel members as required for the load to be supported and the distance span. Trapeze hangers shall not be utilized for fire and sprinkler piping and plumbing drain waste and vent piping. Hanger rods shall be as specified above, properly sized for the load supported but not less than 5/8" diameter. Un-insulated copper piping shall be isolated from the steel trapeze. Individual pipe shall be guided on the horizontal member at every other hanger point with 1/4" U-bolt fabricated from steel rod. Provide full circle galvanized sheetmetal insulation shield for insulated piping at trapeze hangers with U-bolt guide and galvanized sheetmetal insulation half-shield at other trapeze hangers. Insulation shield shall be 18 gauge minimum, Grinnell Fig. 167 or equivalent.
K. Vertical piping shall be supported at each floor level by means of riser clamps, Grinnell Fig. 261 and Fig. G-121, Erico, copper clad for copper piping systems, or equivalent. Proper allowance for the expansion and contraction of the vertical risers shall be provided. Contractor shall submit shop drawings indicating proposed method for support and control of expansion and contraction of vertical piping.

L. The use of pipe hooks, chains, or perforated iron for pipe hanger supports will not be permitted.

M. All insulated piping systems specified in Section 22 0700, Plumbing Insulation and Section 23 0700, HVAC Insulation, shall be provided with individual hangers sized to encircle the insulation. Hangers for insulated domestic water piping and roof drain piping systems may be installed under the insulation. See applicable sections for insulation thickness requirements. The specified piping systems where supported by means of trapeze hangers shall not rest directly on the trapeze horizontal members. The insulation at hangers and trapeze hangers shall be protected by means of insulation shield, Grinnell Fig. 167, Erico, or equivalent. Grinnell Fig. 160, Erico, or equivalent, curved steel pipe saddle, shall be provided at roll hangers. Contractor shall provide section of high density calcium silicate insulation or thermal hanger shields as manufactured by Pipe Shields, Inc., or equivalent, at all insulation piping system hanger and support points for piping 1-1/2" or larger.

N. Attachment of piping hangers to the building structure shall be provided in a manner approved by the Architect. The Contractor shall provide concrete inserts in the building construction at the time the concrete is poured and hangers shall be attached to these inserts. Self-drilling expansion anchors, Federal Specification FF-S-325, may be used in concrete construction not less than 4" thick. Applied load shall not exceed manufacturer's approved ratings. Power driven fasteners may be used in existing concrete or masonry not less than 4" thick where approved by the Architect. Attachment to steel construction shall be by means of beam clamps Grinnell Fig. 131, Erico, C-clamps Grinnell Fig. 86, Erico, or equivalent may be utilized for attachment of light loads as approved by the Structural Engineer. Attachment to wood construction shall be by means of wood screws or lag bolts.

2.6 PIPE SLEEVES

A. Pipe sleeves in concrete and masonry construction, footings and beams shall be Schedule 40 black steel pipe through 10", standard wall thickness for sizes 12" and larger, ASTM A 53, A 106, or A 120.

1. For sleeve installation below grade in cast in place concrete wall or floor and masonry construction, sleeves shall be GPT type WS sleeves with minimum 2" water-stop collar or equivalent. The sleeves shall be provided free of welding slag. The water stop collar shall be welded all around on both sides to the sleeve at the point on the sleeve that positions it at the midpoint of the wall. Sleeve shall be primed inside and outside with Sherwin Williams Water Base Red Primer, or approved equivalent.

B. Pipe sleeves in gypsum board construction shall be galvanized steel metal, minimum 24 gauge; round tube closed with welded longitudinal joint and flanges on both sides.

C. Pipe sleeves shall be furnished and set by the Contractor and they shall be responsible for their proper and permanent location. Piping will not be permitted to pass through footings, beams or ribs except with written consent of the Architect.

D. Pipe sleeves shall be installed and properly secured in place at all points where pipes pass through gypsum board stud walls, concrete, and masonry construction and at all fire and smoke rated walls and partitions.

E. Where insulated piping is installed, calcium silicate inserts to match the insulation thickness and extending 1" past the sleeve on both ends, shall be provided.
F. Sleeves shall be not less than 1" or more than 2" larger in diameter than the pipe to be installed.

G. Pipe sleeves in floors shall extend 2" above finished floor in chases and equipment room areas unless otherwise approved by the Architect. Openings between piping and sleeves shall be made watertight with plastic cement installed to a minimum depth of 2".

H. Un-insulated piping passing through fire walls, smoke wall, sound control walls and air plenum separations shall be sealed airtight to the adjacent construction by means of UL approved fire stop sealant materials.

I. Insulated piping passing through fire walls and smoke walls shall be provided with Calcium Silicate pre-formed pipe insulation of thickness to match adjacent piping, extending minimum 1-inch beyond sleeve in each direction.

1. For penetrations through concrete or masonry walls/floors, the space between the piping sleeve and insulation shall be sealed airtight with UL approved firestop sealant and packed with minimum 4" thickness mineral wool (minimum 4 pcf density) tightly packed and recessed to accommodate sealant.

2. For penetrations through gypsum board wall construction, both sides of the annular space between the insulation and sleeve shall be sealed with UL approved firestop sealant.

J. Penetrations of gypsum board sound walls and air plenum separators shall be caulked airtight with an approved UL firestop sealant.

2.7 PIPE SLEEVE SEAL SYSTEMS

A. Provide pipe sleeve seal systems by one of the following:

1. Link-Seal Modular Wall Penetration Seal as manufactured by GPT.
2. Metraflex Company
3. Proco Products, Inc.

B. Description: Modular sealing element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic, reinforced nylon polymer
3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

C. Pipe sleeve seal system shall be utilized at all exterior wall penetrations.

D. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Provide and erect, according to the best practices of the trade, all piping shown on drawings and
required for the complete installation of these systems. The piping shown on the drawings shall be considered as diagrammatic for clearness in indicating the general run and connections, and may or may not in all parts be shown in its true position. The piping may have to be offset, lowered or raised as required or as directed at the site. This does not relieve the Contractor from responsibility for the proper erection of systems or piping in every respect suitable for the work intended as described in the specifications. In the erection of all piping, it shall be properly supported and proper provisions shall be made for expansion, contraction and anchoring of piping. All piping shall be cut accurately for fabrication to measurements established at the construction site. Pipe shall be worked into place without springing and/or forcing, properly clearing all windows, doors, and other openings and equipment. Cutting or other weakening of the building structure to facilitate installation will not be permitted. All pipes shall have burrs and/or cutting slag removed by reaming or other cleaning methods. All changes in direction shall be made with fittings. All open ends of pipes and equipment shall be properly capped or plugged to keep dirt and other foreign materials out of the system. Plugs of rags, wool, cotton waste or similar materials may not be used in plugging. All piping shall be arranged so as not to interfere with removal and maintenance of equipment or filters or devices; and so as not to block access to manholes, access openings, etc. Flanges or unions as applicable for the type of piping specified shall be provided in the piping at connections to all items of equipment including refrigeration machines. All piping shall be so installed to ensure noiseless circulation. All valves and specialties shall be so placed to permit easy operation and access, and all valves shall be regulated, packed and adjusted at the completion of the work before final acceptance. All piping shall be erected to ensure proper draining.

3.2 JOINTS

A. Caulked Joints: Caulked joints in hub-and-spigot piping and vent piping shall be packed firmly with white oakum, "Sealite No. 110," or hemp and caulked with pure molten lead not less than 1" deep. Resilient molded gasket joints or "Ty-Seal" may be used in lieu of lead and oakum for sanitary soil, waste and vent piping. No-hub pipe and fittings will be accepted with the exception that no-hub pipe and fittings shall not be allowed for buried installation.

B. Screwed Joints: Shall have American Taper pipe threads. Ream pipe ends and remove burrs after threading. Make up joints using Teflon tape or other approved compound applied to the male threads only.

C. Solder Joints: Copper tubing shall be cut square and burrs removed. Both inside of fittings and outside of tubing shall be well cleaned before sweating. Care shall be taken to prevent annealing of fittings and hard drawn tubing when making connections. Joints for sweated fittings shall be made with a non-corrosive paste flux and solid 95-5 tin-antimony wire solder, unless otherwise specified. Cored solder will not be permitted. 50/50 lead solder shall not be permitted for any applications.

D. Welded Joints: On black steel piping 2-1/2" and above in size, the joints may be welded. Welding shall be done using either gas or electric welding equipment. Certified welders shall be used. Welders shall be certified in accordance with Section IX of ASME Boiler and Pressure Vessel Code, latest edition. All pipe surfaces shall be thoroughly cleaned before welding. Each joint shall be beveled before being welded. Piping shall be securely aligned and spaced, and the width of circumferential welds shall form a gradual increase in thickness from the outside surface to the center of the weld. All fittings used in the welded piping systems shall be standard ASA fittings, and shall be of standard pipe thickness. The Contractor shall provide a fireproof mat or blanket to protect the structure and adequate fire protection at all locations where welding is done. The use of fittings formed from welded pipe sections will not be permitted.

E. Flanged Joints: Flanged joints shall conform to the American Standard for cast iron flanged pipe fittings, Class 125, 150 or 300 as specified in the applicable Sections of these specifications. Gaskets shall be full face or ring type, non-asbestos, suitable for the service on which used.
3.3 PUMP AND EQUIPMENT CONNECTIONS

A. All piping connecting to pumps and other equipment whether connected utilizing flexible connectors or with solid pipe connectors, shall be installed without strain at the pipe connection of the equipment. The Contractor shall be required, if so directed, to disconnect piping to demonstrate that piping has been so connected.

3.4 EXPANSION AND CONTRACTION

A. The Contractor shall make all necessary provisions for expansion and contraction of piping with offsets or loops and anchors as required to prevent undue strain. Contractor shall provide shop drawings for proposed method and arrangement for control of expansion and contraction of piping. See Section 23 0505 for expansion joints, expansion compensators, pipe guides and pipe anchors.

3.5 PROTECTIVE COATINGS

A. All underground steel pipe shall be wrapped with “Scotchwrap” No. 50 tape or equivalent, to give not less than two complete layers on the entire underground piping system, or piping shall have X-Tru-Coat factory applied plastic protective covering.

3.6 FLUSHING, DRAINING AND CLEANING PIPE SYSTEMS

A. The Contractor shall flush out all water systems with water before placing them in operation. Other systems shall be cleaned by blowing them out with compressed air or nitrogen. After systems are in operation and during the test period, all strainer screens shall be removed and thoroughly cleaned.

3.7 TESTING

A. Before any insulation is installed or before piping is covered or enclosed, all piping systems shall be tested and proven tight at not less than 150% of the maximum service pressure which the piping systems will be required to handle. Piping system tests shall be as specified in the applicable sections of this Specification. All tests shall be witnessed and approved by the Architect.

B. All labor, material, and equipment required for testing shall be furnished by the Contractor. The Contractor shall be responsible for all repairs and retesting as required. All instruments and other equipment whose safe pressure range is below that of the test pressure shall be removed from the line or blanked off before applying the tests. To perform tests, all lines shall be flushed and cleaned.

C. All safety measures required by codes or ordinances or reasonably applicable to the situation shall be provided by the Contractor in conjunction with the testing of the piping systems.

D. Equipment or piping to be pressure tested shall not be insulated, covered, or concealed prior to that test. Underground piping may be partially backfilled prior to pressure test when required for application of the test except that joints shall remain exposed until after the test. Tie rods, clamps etc., shall be in place and fastened.

E. Tests shall not be used to establish pressure ratings.

F. Protect all piping and equipment against over pressure, collapse from vacuum, and hydraulic shock during the filling, testing and draining procedures. Seats of iron valves shall not be subjected to a pressure in excess of the maximum cold working pressure of the valve. Pressure tests against other closed valves shall not exceed twice the normal rating.
G. Apply test pressure only after the system and test medium are at approximately the same temperature, preferably not less than 60°F. Note that some applicable codes may require testing above a specified minimum temperature.

H. Remove from the system all pumps, turbines, traps, expansion joints, instruments, control valves, safety valves, rupture discs, orifice plates, etc., which might be damaged by the test. Also remove all items such as orifice plates which might trap air in a system to be hydrostatically tested. Disconnect all instruments and air lines where copper tubing starts.

I. Systems may be separated into sub-systems for testing if such action will expedite or simplify the testing.

J. During hydrostatic testing of lines, provide temporary supports to prevent overstressing supports or hangers. When tests are completed, remove all temporary supports, locks, stops, etc., and adjust supports for their cold load and alignment.

END OF SECTION
SECTION 230505 - PIPING SPECIALTIES

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Furnish and install all piping specialties necessary for satisfactory operation of the systems. Conform to applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

B. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.

1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.

2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements.

B. Section 23 0504, Pipe and Pipe Fittings.

C. Section 23 0523, Valves.

1.3 SUBMITTAL DATA

A. Furnish complete submittal data for all piping specialties including manufacturer’s specifications, performance characteristics, ratings, installation instructions, certifications and approval of listing agencies, wiring diagrams, and selection analysis.

PART 2 - PRODUCTS

2.1 STRAINERS

A. Strainers suitable for the application shall be furnished and installed on the high pressure side of pressure reducing valves, pressure regulating valves, suction side of pumps, inlet of indicating and control instruments and equipment subject to sediment damage, and as shown on the drawings. Strainers shall be "Y"-type unless basket strainers are indicated. Tee-type strainers will not be accepted. Strainer element shall be removable without disconnecting piping. Screens shall be Type 304 stainless steel with 1/8 inch perforations for water service, and 1/16 inch perforations for gas services. Every strainer shall be provided with a blow-off connection not less than 1/2" NPT and provided with a ball valve the full size of the strainer outlet tapping. Strainers located outside of mechanical equipment rooms and above ceilings shall be provided with hose connection and cap on the outlet of the blowoff valve. Strainers shall be Spirax Sarco, Armstrong, Febco, Grinnell, Hoffman, Keckley, Metraflex, Mueller, Yarway, or equivalent.

B. Strainers 2" and under for copper piping systems shall be threaded connection, bronze body, 250 PSIG maximum working pressure, suitable for steam, oil, gas and liquid service, Sarco BT or equivalent.
C. Strainers 2" and under for steel piping systems shall be threaded connection, bronze body, as specified above or cast iron body as specified herein, except all strainers in galvanized steel domestic water systems shall be bronze body. Cast iron strainers shall be threaded connection, 250 PSIG maximum working pressure, suitable for steam, oil, gas and liquid service, Sarco IT or equivalent.

D. Strainers 2-1/2 inches or larger shall be standard flanged connection ANSI-125, cast iron body, suitable for steam, oil, gas, and liquid service, 125 maximum working pressure at 353°F maximum temperature, Sarco CI-125 or equivalent.

E. Basket strainers 2" and larger shall be standard flanged ANSI-125, cast iron body bolted cover, Type 304 stainless steel screen, suitable for steam or liquid service, 125 maximum working pressure at 353°F maximum temperature, Sarco 528-B-125, or equivalent.

2.2 SUCTION DIFFUSERS

A. Suction diffusers shall be furnished and installed at the suction of pumps where indicated on the drawings. Suction diffuser outlet shall be not less than pump suction size and suction diffuser system inlet shall be a minimum of one size larger than suction diffuser outlet size. Suction diffuser shall provide for a smooth flow of water into the pump inlet, and shall be complete with strainer, adjustable support leg, and start-up strainer. Start-up strainer shall be removed at the final testing and balancing phase.

2.3 PRESSURE GAUGES

A. 2.5-inch glycerin filled, SS case, 1.5% accuracy, dual scale (PSI & KPA), bronze bourdon tube and 0.25-inch NPT connection, brass snubber with properly selected filter disc for the application, and needle valve with knurled brass or ABS plastic handle. Provide multiple needle valves where a single pressure gauge is used to measure pressure at multiple points. Provide siphon for steam gauges. Winters, Weiss, Marshalltown, Ashcroft, Trerice, Weksler, or equivalent.

B. Select pressure range as indicated on the drawings, or if not indicated select so that the normal operating pressure is approximately 50% of the scale range. Provide compound and vacuum gauges where required by the application.

C. Install gauges so they are easily readable from normal operator level. Where the sensing location is not convenient to the operator, install the gauge and needle valves at a location easily read from normal operator level, extend piping from there to the sensing point on the main pipe, and provide a ball valve for isolation at the main. In addition, provide drain and vent valves to facilitate removing air and water from the sensing line.

2.4 THERMOMETER AND THERMOMETER WELLS

A. Either liquid filled or digital type, vari-angle, 3-1/2" stem for pipe sizes through 6" and 6" stem for pipe sizes 8" and larger, dual scale (degrees F & C), separable brass socket, extension neck where installed in insulated piping, and accuracy 1% of range. Winters, Weiss, Moeller, Trerice, Weksler, Duro, or equivalent.

1. Liquid Filled Type: 9" case, straight form, V-shaped, high pressure die cast aluminum, baked enamel finish, with heavy glass-protected front firmly secured with spring action, and organic liquid filled magnifying lens. Winters 9IT or approved equal.

2. Digital Type: May be used both indoors or in outdoor locations not exposed to sunlight, high impact ABS plastic housing, suitable for operation at 16 Lux. Winters 9IT or approved equal.
B. Ranges: Provide the following ranges except where otherwise indicated:

- Heating Water: 30-240 degrees F
- Chilled Water, Condenser Water, Domestic Cold Water: 0-120 degrees F
- Domestic Hot Water: 30-180 degrees F

2.5 MANUAL AIR VENTS

A. Provide manual air vents at locations indicated on the drawings, at the high point of all liquid piping system and as otherwise required for proper air elimination and liquid circulation.

B. Manual air vents shall be 1/2" brass ball valves as specified in Section 23 0523. Provide brass hose connection and plug on valve outlet.

2.6 AUTOMATIC AIR VENT

A. Provide automatic air vents for all separators, at the high point of all hydronic systems and at locations indicated on the drawings. Automatic air vents shall be 3/4" size, minimum. Provide manual shut-off ball valve between automatic air vent and piping system. Automatic air vents shall be float type, 150 PSIG maximum working pressure, 3/4" NPT system connection, Amtrol Model No. 720, Taco, Armstrong, Watson-McDaniel, Hofmann, or equivalent.

2.7 MANUAL DRAIN VALVES

A. Provide manual drain valves at locations indicated on the drawings, at the low points of all liquid piping systems, and as otherwise required for proper draining of systems. Manual drain valves shall be sized as shown on the drawings but not less than 3/4" size, brass ball valve, as specified in Section 23 0523. Pipe discharge from drain valves to floor drain, floor sink, or as otherwise directed for indirect discharge into sanitary sewer system. For drain valves located above ceiling or in location outside mechanical equipment areas provide brass hose connection and cap for valve discharge.

2.8 TEMPERATURE AND PRESSURE TEST PLUGS

A. 0.25 or 0.5-inch NPT with brass body, EPDM core, and brass gasketed cap. Winters, Peterson, or approved equal. Supply one pressure/temperature test kit with two 4" Duro #105 pressure gauges of 1% accuracy and ranges as required by application; and two 2" Tel-Tru #39R Bi-metal thermometers with 8" stem, 1% accuracy, and ranges as required by the applications; and a protective carrying case.

2.9 FLOW BALANCE VALVE

A. Furnish and install calibrated balance valve equivalent to Bell and Gossett "circuit-setter," Griswold, Taco, Armstrong, or equivalent at locations indicated on the drawings. Balance valves shall be brass or cast iron body, NPT or sweat connections through 3" size and flanged connections above 4" size, 125 PSIG working pressure minimum. Balance valve shall be equipped with two brass readout valves with integral EPT insert and check valve designed to minimize system fluid loss during balancing and monitoring process. Each valve shall be provided with a calibrated nameplate permitting accurate system balance. Flow balance valves shall be not less than full line size with maximum pressure drop of 10 feet. Provide one readout kit including flow meter, readout probes, hoses, flow charts and calculators, all contained in carrying case.
2.10 WATER FLOW MEASURING DEVICES

A. Furnish and install cast iron wafer type flow meter equivalent to Bell & Gossett "OP-Series," Griswold, Taco, Armstrong, or equivalent at locations indicated in the drawings. Flow meters shall be equipped with two brass readout valves with integral EPT insert and check valve designed to minimize system fluid loss during monitoring process. Flow meter shall be furnished with a calibrated nameplate specifying the flow range through a range of differential pressures. Water flow measuring devices shall be not less than full line size with maximum pressure drop of 10 feet. Provide one readout kit including flow meter, readout probes, hoses, flow charts and calculators, all contained in carrying case.

2.11 AUTOMATIC FLOW LIMITING VALVES

A. To maintain constant flow within 5 percent over a range of 2-32 psid. Bronze or cast iron body, stainless steel cartridges, two pressure readout ports with quick disconnect valves and caps, SS identification tag marked with rated flow. Valves through 2 inch size shall be threaded connection, valves over 2 inches shall be wafer type; 150 [300] psig rated. Supply one readout kit including flow meter, hoses and flow charts all contained in carrying case. Size valves for required flows. Griswold, FDI, or approved equal.

2.12 FLEXIBLE CONNECTORS

A. Furnish and install flexible connectors at locations indicated on the drawings and at all piping connections associated with equipment mounted on or hung from vibration isolators. Flexible connectors shall be constructed of multiple ply nylon cord fabric and neoprene, operating pressure 150 PSIG at 220°F through 12” size and operating pressure of 125 PSIG at 220°F for sizes 14” through 24”. Provide butyl or Hypolon liner and applications with fluid temperatures in excess of 225°F.

B. Flexible connectors shall be single or twin sphere with Class 150 flange connections for sizes 2-1/2” and larger and threaded connections with galvanized female unions for sizes 3/4” through 2”. Mason Industries MFTCR, Hyspan, Metra-Flex, Keflex, Proco, or equivalent. Flexible connectors required for outdoor installation shall be braided brass type.

C. Installation of flexible connectors shall be in strict accordance with manufacturer’s recommendations. Spacing between piping system flanges shall be based on the flexible connector’s expanded length corresponding to the system’s operating pressure. Control rods or cables shall be provided for units installed in unanchored applications where system operating pressure and dynamic forces exceeds manufacturer’s recommendations for unrestrained installations.

2.13 EXPANSION TANK

A. Furnish and install diaphragm type, pre-pressurized, ASME code construction 125 PSIG working pressure, expansion tank in horizontal or vertical arrangement as shown on the drawing and required for equipment space allocation. Properly sized expansion tanks shall be provided for all closed circuit hydronic systems. Connect expansion tank to the low pressure side of the piping system with 3/4” minimum line size; provide quarter turn ball valve with handle removed for manual isolation valve. Contractor shall field verify expansion tank air charge and re-charge as required to maintain correct system pressurization and tank expansion volume. Expansion tanks shall be Amtrol, Woods, Armstrong, Taco, or equivalent.

2.14 AIR SEPARATOR

A. Furnish and install air separator, inline or tangential type as shown on the drawings for all closed circuit hydronic system. Inline air separators shall be fabricated of steel or cast iron, 125 PSIG working
pressure. Tangential type air separators shall be ASME code construction for 125 PSIG working pressure and shall be furnished with internal perforated stainless steel air collection tube, bottom blow down connection and removable stainless steel strainer element with 3/16” perforations and free area of not less than five times the cross-sectional area of the connecting piping.

B. Each air separator shall be provided with an automatic air vent, 3/4” size, Amtrol Model No. 720 or equivalent, with manual shut-off ball valve between automatic air vent and air separator.

C. Air separators shall be full line size and installed at the high point of the piping system unless otherwise indicated in the drawings.

D. Air separators shall be Amtrol, Woods, Armstrong, Taco, or equivalent.

2.15 WATER PRESSURE REGULATING VALVES

A. Furnish and install water pressure regulating valves, Watts U5B, Bell & Gossett, Amtrol, Cash, Jordan, or equivalent, 3/4” size minimum for water makeup to all hydronic systems and at other locations as shown on the drawings. Water pressure regulating valves shall be brass body, union inlet with integral strainers, 300 PSIG maximum working pressure, with built-in thermal expansion bypass.

B. For high water capacity applications provide Watts 2235B, Bell & Gossett, Amtrol, Cash, Jordan, or equivalent.

C. Provide high or low pressure range depending on application requirements. Set pressure shall be as shown on the drawings, or as required to provide a minimum system pressurization of 12 PSIG at the system’s highest point for closed circuit hydronic systems, or as recommended by equipment manufacturers.

2.16 WATER PRESSURE RELIEF VALVES

A. Furnish and install ASME labeled, National Board Stamped, water pressure relief valves, Watts Series 174A or 740, Bell & Gossett, Amtrol, Cash, Jordan, or equivalent, 3/4” size minimum for relief of all water makeup to all closed circuit hydronic systems. Properly sized relief valves shall be provided where required for over-pressure protection on heat exchangers, converters, boiler, and pressure vessels, and other locations as shown in the drawings.

B. Relief valves shall be sized for the full system heating capacity, to match the makeup capacity, or as otherwise required to protect the system from over-pressure conditions. Relief valves shall be factory pre-set for maximum pressure rating shown in the drawings, or for approximately 125% of the system operating pressure, but in no case shall the relief valve setting exceed the maximum safe operating pressure of the system and system components and equipment.

2.17 WATER TEMPERATURE AND PRESSURE RELIEF VALVES

A. Furnish and install ASME labeled, National Board stamped water temperature and pressure relief valves, Watts, Cash, or equivalent, for all domestic water heaters, domestic water storage tanks, and other locations indicated in the drawings.

B. Water temperature and pressure relief valves shall be sized for the full system heating capacity at 210°F maximum operating temperature and shall be furnished with the required valve thermostat tube extension length.

2.18 WATER REDUCED PRESSURE BACKFLOW PREVENTERS
A. Furnish and install water reduced pressure backflow preventer, as approved and accepted by the City of Santa Fe, State of New Mexico, Febco Model 825Y, Hersey, Beeco, Watts, or equivalent. 3/4” minimum size shall be provided for water makeup to all required HVAC systems. Backflow preventers shall be provided at other locations as shown on the drawings. Reduced pressure backflow preventer shall include two shut-off gate or ball valves, two check valves, pressure relief valve, and four test cocks. Units shall be factory assembled, tested and certified. Units 2” and smaller shall be brass body, threaded connections, 175 PSIG maximum working pressure. Units 2-1/2” and larger shall be provided with flanged connections.

B. Water reduced pressure backflow preventer installation shall be in accordance with manufacturer's instructions and City of Santa Fe, State of New Mexico requirements for access for testing and inspection.

C. See Division 33, for backflow protection associated with site water supply system.

D. Backflow protection devices associated with landscaping and irrigation systems shall be furnished and installed under the Site Work sections of these specifications.

2.19 CHEMICAL WATER TREATMENT

A. Chemical water treatment for hydronic systems shall consist of equipment, start-up, testing, chemicals and one-year full service as listed on the Equipment Schedule, shown on the Drawings, and specified under the applicable piping system sections of this Specification.

2.20 FLOW METERS AND INSTRUMENTATION

A. Water, meters and instrumentation shall be furnished and installed as shown on the drawings and specified in Section 23 0900.

2.21 SOLENOID VALVES

A. Furnish and install electric solenoid valves as shown on the drawing and as required for the operation of the mechanical systems. Solenoid valves shall be 115 volt single phase, 60 Hz, two-way arrangement, two positions with normally open or normally closed arrangement as required of the application. Solenoid valves associated with safety protection of systems including freeze-protection, drain down, etc. shall be provided such that in the event of a power failure the system shall fail to a safe operating condition. Solenoid valves shall be as manufactured by ASCO, Armstrong, Honeywell, Metrex, or equivalent.

B. See Section 23 0500, Common Work Requirements, and Section 23 0549, HVAC and Electrical Installation Coordination, for requirements associated with electrical control and power wiring for solenoid valves. Furnish hazardous duty enclosure where required by the application.

2.22 FLOW SWITCHES

A. Furnish and install flow switches where required for protection and/or monitoring of mechanical equipment including water chillers, boilers, pumps, etc. and as otherwise shown on the equipment schedule, and the drawings.

B. Flow switches shall be either paddle type or differential pressure type as required by the application and as shown on the drawings, except differential pressure type flow switches shall be utilized for water chillers and other applications where minor pressure fluctuation could cause nuisance tripping of equipment operation.
1. Paddle type flow switch shall be McDonnell and Miller Model FS7-4 Series, or equivalent designed for industrial duty, brass body and trim, 300 PSIG maximum working pressure, paddle size as required for application, single pole double throw switches, with electrical rating of 7.4 full load amps at 115 VAC. Provide hazardous duty enclosure where required by the application. Flow switches shall be installed in a horizontal pipe with inlet and outlet conditions necessary to provide trouble-free operation.

2. Differential pressure flow switch shall be Honeywell Model 406 Series or equivalent, adjustable pressure differential setting, dustproof mercury switch enclosure, 1/4" NPT bellows connections, single pole, single throw switch, with electrical rating of 7.2 full load amps at 115 vac. Differential pressure switches shall be properly supported on the equipment controlled or wall mounted adjacent to the equipment or piping system.

2.23 ELECTRICAL HEAT TRACING SYSTEM

A. Furnish and install electric heat tracing system for winterizing protection for all liquid piping systems exposed to the outdoor ambient environment and piping systems in the unheated areas of the building.

B. Heating cable shall be self-regulating rapid trace, Type FLX, low temperature, heating cable rated at 150°F maximum maintenance temperature and suitable for 185°F maximum exposure temperature, or Type HTSX medium temperature heating cable rated at 250°F maximum maintenance temperature and suitable for 420°F maximum exposure temperature, as required by the application and as manufactured by Thermon, Chromolux, or equivalent. Heating cable shall be flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conducive inner core material between two parallel copper bus wire, designed for cut-to-length at the job site by the Contractor and suitable for wrapping around piping valves and complex fittings. Self-regulation shall prevent overheating and burnouts even where the cable overlaps itself. Provide end seals for ends of circuits. Wire at the ends of circuits shall not be tied together. Long term stability via service life performance test per IEEE 515 Std; latest edition.

C. Heating Tracing System shall be furnished with all accessories required for the complete installation including the power supply connection fitting and stainless steel mounting brackets with stainless steel worm gear clamp to fasten bracket to pipe, 1/2 inch wide fiberglass reinforced pressure sensitive cloth tape as required to fasten cable to pipe at not greater than 12 inch intervals. End termination, splice and tie kits shall be provided above insulation for maintenance accessibility. Furnish ambient sensing thermostat control NEMA 4 (water-tight) enclosures for freeze protection applications to energize all heat tracing circuits from a central freeze protection control panel, 1/2 inch NPT conduit hub, SPST switch with required rating at 115 VAC through 5 KW systems capacity and 208 volt single phase, 60 HZ for system heating capacities in excess of 5 kW. Set thermostat to maintain pipe surface temperature at not less than 34°F. Furnish and install piping labels on systems with electric heat tracing, manufacturer’s standard (NEC code), labeled or stamped "ELECTRIC TRACED" labels shall be installed on the insulation pipe jacket at 10 foot intervals along the pipe on alternating sides.

D. Electric Heat tracing system sizing shall be provided as recommended by the manufacturer to maintain pipe surface temperature at 34°F minimum during the winter based upon an outdoor design temperature of 0°F with 15 MPH wind velocity, and the normal system fluid operating temperature. See Section 22 0700, Plumbing Systems Insulation, and Section 23 0700, Mechanical Systems Insulation, for insulation characteristics and thickness associated with electrical heat traced systems. Piping system insulation shall be oversized as required to accommodate the heating cable; coordinate with Section 22 0700 and Section 23 0700.

E. See Section 23 0500, Common Work Requirements, Section 22 0549, Plumbing and Electrical Installation Coordination, and Section 23 0549, HVAC and Electrical Installation Coordination, for requirements associated with electrical control and power wiring. Each heat tracer circuit shall have EPDM style
breakers or controllers for ground fault protection.

F. Non-metallic pipe applications shall have one (1) layer of aluminum tape below and above the heater, run longitudinally to enhance heat transfer into non-metallic piping systems.

G. Package heat tapes with integral thermostat and "press-to-test" device may be utilized for small freeze protection systems, subject to review and acceptance by the Architect.

<table>
<thead>
<tr>
<th>Pipe Size, In.</th>
<th>Insulation Thickness</th>
<th>Cable Type</th>
<th>No. of Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 to 0.75</td>
<td>See 2207 00 & 23 0700</td>
<td>Min. 3 In./Ft.</td>
<td>1</td>
</tr>
<tr>
<td>1.0 to 2.00</td>
<td>See 22 0700 & 23 0700</td>
<td>Min 3 In./Ft.</td>
<td>1</td>
</tr>
<tr>
<td>3.0</td>
<td>See 22 0700 & 23 0700</td>
<td>Min 5 In./Ft.</td>
<td>1</td>
</tr>
<tr>
<td>4.0 to 6.0</td>
<td>See 22 0700 & 23 0700</td>
<td>Min 5 In./Ft.</td>
<td>1</td>
</tr>
<tr>
<td>8.0 to 10.0</td>
<td>See 22 07 0 & 23 0700</td>
<td>Min 10 In./Ft.</td>
<td>1</td>
</tr>
<tr>
<td>12.0 to 14.0</td>
<td>See 22 0700 & 23 0700</td>
<td>Min 8 In./Ft.</td>
<td>2</td>
</tr>
</tbody>
</table>

Designer Note: Coordinate with Division 26 for quantity of circuits.

2.24 EXPANSION JOINTS

A. Furnish and install corrugated bellows expansion joint, Hyspan Series 1500, Metra-Flex, Keflex, Proco, Flexonics, or equivalent, self-equalizing, 150 PSIG working pressure at 850°F, Class 150 ASA flange connections 1-1/2" size and above, single or dual center base configuration as shown on the drawings, constructed of corrugated Type 304 or 321 stainless steel, ring controlled, with integral stainless steel or Monel sleeve, and removable carbon steel external housing to protect bellows and support insulation. Furnish limit rods to prevent expansion joint from exceeding rated travel. Joint design shall be for maximum flexibility over 10,000 cycles minimum.

B. Expansion joint sizing and installation shall be as shown on the drawing and as recommended by the manufacturer.

C. Expansion joints shall be insulated with flexible 2" minimum thickness of high temperature fiberglass blanket insulation furnished with joint and installed under the external protective housing.

D. Contractor shall carefully check expansion joint limit rods and make adjustments as required to ensure proper joint movement and operation.

2.25 EXPANSION COMPENSATORS

A. Furnish and install expansion compensators, Hyspan series 8500, Metra-Flex, Keflex, Proco, Flexonics, or equivalent, stainless steel laminated bellows with stainless steel or carbon steel shroud, 175 PSIG pressure rating at 250°F, 2 inch straight line expansion and 1/2 inch contraction. Furnish copper tube with sweat ends for compensators installed in copper piping systems. Furnish standard wall carbon steel pipe tube for compensators installed in steel piping systems, threaded connectors for sizes 2" and smaller and Class 150 ASA flange connection for sizes 2-1/2" or larger.

B. Expansion compensators sizing and installation shall be as shown on the drawings and as recommended by the manufacturer.
2.26 PIPE ALIGNMENT GUIDES

A. Furnish and install factory fabricated steel pipe alignment guides, Hyspan Series 9500, Metra-Flex, Keflex, Proco, Flexonics, or equivalent, to maintain the longitudinal position of pipe centerline between expansion joints and compensators with axial restraint. Alignment guides shall consist of a bolted two-section outer cylinder and base with two-section guiding spider bolted tight to the pipe guide. Guide and spider shall be sized to clear pipe and pipe insulation and long enough to prevent over travel of spider and cylinder. Guides shall not be used for pipe support.

B. Alignment guides shall be arranged and installed as shown on the drawings and as recommended by the manufacturer.

2.27 PIPE ANCHORS

A. Pipe anchors shall be constructed of welded steel as detailed on the drawings.

B. Pipe anchors shall be arranged as shown on the drawings and as required to properly control/piping system expansion and contraction in conjunction with system flexibility due to off-sets, bends, and loops and expansion joints and compensators.

PART 3 - EXECUTION

3.1 INSTALLATION

A. All specialties shall be installed in accordance with the best standard practices and as recommended by the manufacturer.

B. Install thermometers so they are easily readable from operator level.

C. Where thermometers, gauges, vents and test fittings occur in insulated piping systems or on insulated equipment, extension necks shall be provided to extend beyond the insulation.

3.2 AIR VENTS

A. Manual air vents shall be installed as specified herein and at the high points in all piping systems.

B. Automatic air vents shall be installed as specified herein and at locations indicated on the drawings. Automatic air vents shall be installed level and in accordance with manufacturer’s directions to properly vent system, complete with individual isolation valves.

3.3 STRainers

A. All strainer screens, including basket strainers and suction diffusers, shall be removed and cleaned prior to commencing testing and balancing work and shall be maintained clean through project final acceptance by the Owner. Suction diffuser start-up strainers shall be removed prior to final system testing and balancing work.

3.4 TEST AND ADJUSTMENT

A. Field adjust all water pressure regulating valves, flow switches, water level controls, and specialties to provide required system operation.

B. Field test and verify the operation of all safety devices including water relief valves and temperature and...
pressure relief valves.

3.5 RELIEF VALVE DISCHARGE

A. Water pressure relief valve and water temperature and pressure relief valve discharges shall be piped full size to the outside of the building or discharged indirectly in a properly sized building floor drain or floor sink, and as allowed by the Building Mechanical and Plumbing Codes. When the operating discharge temperature is in excess of 212°F, the discharge shall be equipped with a splash shield or centrifugal separator.

B. Water reduced pressure backflow preventer discharge shall be piped full size to the outside of the building or discharged indirectly into a properly sized building floor drain or floor sink as allowed by the Building Mechanical and Plumbing Codes. Provide a bronze air gap funnel with stainless steel fasteners for installation under reduced pressure backflow prevention relief valve. Febco Model AGD or equivalent, 1" discharge pipe size for backflow preventer size through 2".

END OF SECTION
SECTION 230523 - VALVES

PART 1 - GENERAL

1.1 REQUIREMENTS

A. All Valves shall conform with current applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

B. All Valves shall meet the current MSS Specifications covering Bronze & Iron Valves. MSS-SP-80, MSS-SP-70, MSS-SP71, MSS-SP-85 where applicable.

C. Lead Ban: All systems and system components, pipe, fittings, and fixtures delivering water for human consumption shall be lead free.
 1. Any product designed for dispensing potable water shall meet both the NSF 61 and NSF 372 test standards via third-party testing and certification.
 2. Lead free refers to <0.25% weighted average lead content in relation to wetted surface of pipe, fittings, and fixtures in systems delivering water for human consumption, and solder and flux which does not contain more than 0.2% lead.

1.2 RELATED SECTIONS

A. Section 23 0500 for Common Work Requirements for HVAC.
B. Section 23 0523 for Valve Identification.
C. Section 23 0504 for Pipe and Pipe Fittings.
D. Section 23 2313 for Refrigerant Piping System.
E. Section 23 0900 for Automatic Temperature Control Valves.
F. Division 21 for fire suppression system valves and tamper switches.
G. Division 22 for plumbing system.

1.3 SCOPE

A. Contractor shall furnish and install all valves and accessories necessary for satisfactory operation of the systems.

1.4 VALVE REQUIREMENTS

A. All Gate, Globe, Check, Ball valves shall be manufactured by Milwaukee, Nibco, Apollo, Stockham, Powell, Crane, Tyco-Grinnell, or equivalent.

B. All lubricated plug valves shall be as manufactured by Rockwell, Walworth, Homestead, or equivalent.
C. Butterfly valves shall be as manufactured by Milwaukee, W. C. Norris, Centerline, Crane, Demco, Keystone, Tyco-Grinnell, Victaulic, Nibco, or Dezurik, or equivalent. Butterfly valves may be used for closed circuit chilled water, heating hot water (200°F maximum) run-around coil and heat pump circulating water systems and for condensing water systems. Butterfly valves shall not be used for domestic water or other non-specified service.

D. Ball valves shall be utilized in lieu of gate valves and globe valves for all HVAC and plumbing systems for sizes 2" and smaller.

E. Butterfly valves may be substituted for gate, globe and ball valves for specified services, and for other services as may be approved by the Architect.

F. All valves furnished under Division 22 and 23, of the same type, shall be products of a single manufacturer unless otherwise approved by Owner’s Representative.

G. Provide gate and globe valves with packing that can be replaced with the valve under full working pressure.

PART 2 - PRODUCTS

2.1 GENERAL SERVICE VALVES, HVAC AND PLUMBING SYSTEMS

A. Gate Valves - 2" and Smaller, Class 125: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 125 construction, solid disc, rising stem, gland packed, non-asbestos packing. Milwaukee 148 (Threaded) or equivalent; Milwaukee 149 (Solder), or equivalent.

B. Gate Valves - 2" and Smaller, Class 150: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 150 construction, solid wedge disc, rising stem, union bonnet, gland packed, non-asbestos packing. Milwaukee 1151 (Threaded) or equivalent; Milwaukee 1169 (Solder), or equivalent

C. Gate Valves - 2" and Smaller, Class 300: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 300 construction, solid wedge disc, rising stem, union bonnet, gland packed, non-asbestos packing. Milwaukee 1184 (Threaded) or equivalent.

D. Gate Valves - 2-1/2" and Larger, Class 125: Valves 2-1/2" and larger shall be of ASTM A-126 Class B cast iron, flanged ends, Class 125 construction, OS & Y Type, rising stem, bronze trim, non-asbestos packing. Milwaukee F2885 or equivalent.

E. Gate Valves - 2-1/2" and Larger, Class 250: Valves 2-1/2" and larger shall be of ASTM A-126 Class B cast iron, flanged ends, Class 250 construction, OS & Y Type, rising stem, bronze trim, non-asbestos packing. Milwaukee F2894 or equivalent.

F. Globe Valves - 2" and Smaller, Class 125: Valves 2-1/2" and smaller shall be of ASTM B-62, Class 125 construction, bronze trim, gland packed, non-asbestos packing. Milwaukee 502 (Threaded), or equivalent; Milwaukee 1502 (Solder) or equivalent.

G. Globe Valves - 2" and Smaller, Class 150: Valves 2" and smaller shall be of ASTM B-62, bronze, Class 150 construction, bronze trim, composition disc, union bonnet, gland packed, non-asbestos packing. Milwaukee 590 (Threaded) or equivalent; Milwaukee 1590 (Solder), or equivalent.

H. Globe Valves - 2" and Smaller, Class 300: Valves 2" and smaller shall be of ASTM B-62, bronze, Class 300 construction, bronze trim, union bonnet, gland packed, non-asbestos packing. Milwaukee 572 (Threaded) or equivalent
I. Globe Valves - 2-1/2" and Larger, Class 125: Valves 2-1/2" and Larger shall be of ASTM A-126, Class B cast iron, flanged ends, Class 125 construction, bolted bonnet, gland packed, non-asbestos packing. Milwaukee F2981M or equivalent.

J. Globe Valves - 2-1/2" and Larger, Class 300: Valves 2-1/2" and larger shall be of ASTM A-126, Class B cast iron, flanged ends, Class 300 construction, bolted bonnet, gland packed, non-asbestos packing. Milwaukee F2983 or equivalent.

K. Check Valves - 2" and Smaller, Class 125: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 125 construction, Y-pattern, swing type design, teflon seat, disc for steam service, Buna-N for water service. Milwaukee 509 (Threaded) or equivalent; Milwaukee 1509 (Solder) or equivalent.

L. Check Valves - 2" and Smaller, Class 150: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 150 construction, Y-pattern, swing type design, bronze seat, composition disc, teflon seat disc for steam service, Buna-N for water service. Milwaukee 510 (Threaded) or equivalent; Milwaukee 1510 (Solder) or equivalent.

M. Check Valves - 2" and Smaller, Class 300: Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 300 construction, Y-pattern, swing type design, bronze regrinding disc. Milwaukee 507 (Threaded) or equivalent.

N. Check Valves - 2 1/2" and Larger, Class 125: Valves 2-1/2" and larger shall be of ASTM A-126 Class B, cast iron, flanged ends, Class 125 construction, bolted bonnet, bronze trim, swing type design. Milwaukee F2974M or equivalent.

O. Check Valves - 2 1/2" and Larger, Class 250: Valves 2-1/2" and larger shall be of ASTM A-126 Class B, cast iron, flanged ends, Class 250 construction, bolted bonnet, bronze trim, swing type design. Milwaukee F2970 or equivalent.

2.2 BUTTERFLY VALVES

A. Valves 2-1/2" and larger shall be full lug pattern, ASTM A-126, Class B cast iron body, 416-SS stems, aluminum/bronze disc, EPDM liner and seats (-30°F to 275°F) w/rigid phenolic cartridge, 200 PSIG working pressure with Bubble tight shut-off. Valves shall be for mounting between flanges with lugs drilled and tapped so that pipe may be disconnected on either side of valve with opposite end remaining under pressure. Milwaukee ML-123-E or equivalent.

B. Valves 4" and smaller shall be provided with level handler operator with spring loaded lock stops. Valves 5" and larger shall be furnished with manual gear operator with hand wheel.

C. Valves installed for insulated services shall be provided with extensions, as required, such that operator does not interfere with insulation or insulation jacketing.

D. Butterfly valves furnished for use in grooved piping system shall meet the material specification requirements as specified herein.

2.3 BALL VALVES

A. Valves 2" and smaller shall be cast of ASTM B-62 bronze, Class 150 construction, 600 PSI W.O.G. Two-piece body, chrome plated ball, blowout proof stem, reinforced TFE seats, non-asbestos packing. Milwaukee BA-100 (threaded) or equivalent. Milwaukee BA-150 (solder) or equivalent.

B. Valves installed on insulated services shall be provided with extensions, as required, such that operator does not interfere with insulation or insulation jacketing. Cutting or notching of the insulation or
bending of handles shall not be permitted.

2.4 BALANCE VALVES

A. Valves 2" and smaller: Ball valve, bronze, Class 150 construction, 600 PSI W.O.G., Two piece body, Milwaukee BA-100 (threaded). Milwaukee BA-150 (soldered), as specified herein or equivalent.

B. Valves 2-1/2" and larger: Lubricated plug valve, cast iron construction, 175 PSI W.O.G., Class 125 flange connections, level handle for valves 4" and smaller, manual gear operator with handle wheel for valve 5" and larger. Walworth No. 1797F or equivalent.

C. Valves 2-1/2" and larger:
 1. Butterfly valve, full lug pattern, as specified herein.
 2. Furnish level handle with infinite throttling positions and locking device for securing handle in any position for valves 4" and smaller and manual gear operator with hand wheel for valves 5" and larger.

2.5 NATURAL GAS VALVES

A. Valves 3/4" and Smaller: Bronze natural gas cock, Walworth No. 590 (square head), Walworth 591 (flat head) or equivalent.

B. Valves 3" and Smaller: Ball valve shall be cast of ASTM B-584 bronze, Class 250 construction, threaded connections, chrome plated big ball and stem, RDTFE seat and stem packing, blow-out proof stem, UL Listed for natural gas service, Apollo 80-100 Series or equivalent.

C. Valves 4" and Larger: Lubricated plug valve, cast iron construction, 175 PSIG W.O.G., threaded connection for valves 2" and smaller, Class 125 Flange connections, level handle operator. Walworth No. 1797F (Flanged) or equivalent.

2.6 MANUAL AIR VENTS AND DRAIN VALVES

A. For manual air vents and drain valves, see Specification Section 23 0505, Piping Specialties.

2.7 BOILER SPECIALTY VALVES

A. For boiler stop-check valves blow-down valves, and relief valves, see Specification Section 23 2213, Steam and Condensate System.

2.8 NON-SLAM SILENT CHECK VALVE

A. Check valves for pump discharge and other required non-slam silent operation, shall be center guided, suitable for vertical or horizontal installation position, cast iron in semi-steel body, bronze disc and trim, stainless steel spring, Buna-N seats, Class 125 or 250 construction, as required by the application, wafer or globe flanged pattern for valves 2" through 10" size and flanged pattern for valves 12" and larger. Milwaukee 1400 Series (wafer) or equivalent. Milwaukee 1800 Series (globe) or equivalent.

2.9 TRIPLE DUTY VALVE

A. At the Contractor’s option, triple duty valve may be utilized at pump discharge in lieu of non-slam check valve and balance/shut-off valve, see Specifications Section 23 0505, Piping Specialties.
PART 3 - EXECUTION

3.1 INSTALLATION

A. All valves shall be installed in locations which will allow easy operation and facilitate maintenance.

B. Gate and Globe valves shall be installed with stems horizontal.

END OF SECTION
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with the applicable provisions of the General Conditions, Supplemental General Conditions, and General Requirements.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.

B. Section 23 0504, Pipe and Pipe Fittings

1.3 SCOPE

A. It shall be understood that the requirements for seismic restraints are in addition to other requirements as specified elsewhere for the support and attachment of equipment and mechanical services, and for the vibration isolation of same equipment. Nothing on the project drawings or specifications shall be interpreted as justification to waive the requirements for seismic restraint as specified herein, shown on the drawings and required by Code.

B. The work under this section shall include furnishing all labor, materials, tools, appliances and equipment, and performing all operations necessary for the complete execution of the installation of seismic snubber restraint assemblies as shown, detailed and/or scheduled on the drawings and/or specified in this section of the specifications.

C. The materials and systems specified in this section shall be provided by the Contractor from a single Seismic Snubber Restraint Materials Manufacturer to assure sole source responsibility for the performance of the seismic restraints used.

D. The seismic snubber restraint materials manufacturer shall be responsible for detailed design for seismic supports, including calculation for size and attachment, signed and sealed by registered State of New Mexico Structural Engineer.

1.4 SUBMITTALS

A. See Section 23 0500 for general requirements for submittal materials. In addition to the requirements contained in Section 23 0500, provide submittal information for all products and materials covered under this Section of the Specifications as listed herein.

B. Furnish complete catalog data on all vibration isolators, restraints, and equipment vibration bases to be utilized for the project in order to establish compliance with the plans and specifications and all code requirements.

C. Furnish complete shop drawing information including construction details for all vibration bases; support points and anchor bolt requirements and locations; method of support for piping and ductwork; method of isolation for piping and ductwork passing through the building structure; and location and arrangement of seismic restraints.

D. Manufacturers not listed as approved in ‘Part 2 - Products’ of this section must submit for prior approval in accordance with provisions contained in Section 23 0500.
E. Drawings shall be reviewed and certified by a registered Professional Engineer, with a minimum of five (5) years working experience in this field, certifying that the submitted seismic restraint system design and anchorage details complies with all specification requirements and applicable codes.

1.5 CODE REQUIREMENTS

A. Seismic restraints shall be provided for equipment, materials and systems furnished and installed under Division 23 of this Specification in accordance with the requirements of the 2015 International Building Code; and NFPA No. 13 for fire protection system as adopted and interpreted by the State of New Mexico and the City of Santa Fe.

1.6 SEISMIC RESTRAINT REQUIREMENTS

A. The Contractor shall submit calculations prepared by a State of licensed Structural Engineer to substantiate that all items of mechanical equipment, ductwork and piping systems are properly supported to resist earthquake forces as required herein.

B. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints securely anchored to the building structure capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements for Seismic Design Category D.

C. All items of mechanical equipment required for life safety including the fire pump and fire protection systems shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 100% of their weight and/or in accordance with IBC Requirements for Seismic Zone.

D. All items of mechanical equipment, except as specified above, and all piping and ductwork furnished and installed under Division 23 shall be provided with seismic restraints securely anchored to the building capable of resisting horizontal forces of 50% of their weight.

E. Seismic restraint/snubber manufacturer shall be responsible for the structural design of attachment hardware as required to attach seismic restraints/snubbers to both the equipment and supporting structure on vibration isolated equipment, or to directly attach equipment to the building structure for non-isolated equipment.

F. The Contractor shall furnish a complete set of approved shop drawings of all mechanical and electrical equipment which is to be restrained to the seismic restraint manufacturer, from which the selection and design of seismic restraint devices and/or attachment hardware will be completed. The shop drawings furnished shall include, at a minimum, basic equipment layout, length and width dimensions, installed operating weights of the equipment to be restrained and the distribution of weight at the restraint points.

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Floor mounted vibration isolators shall be either spring isolators designed for seismic restraint application or pre-compressed molded fiberglass or ribbed neoprene units as specified herein and in the Mechanical Equipment Schedule on the drawings. All vibration isolated equipment shall employ seismic snubbers having an approved "R" rating issued by the State of New Mexico.

B. Hanger type vibration isolators shall consist of steel springs in series with neoprene element as scheduled and specified on the drawings.
C. All vibration isolation devices shall be furnished by a single manufacturer to assure sole source responsibility for the proper performance of the materials used.

D. Vibration isolators shall be provided to maintain a minimum of 1-inch operating clearance.

E. Vibration isolators shall have a minimum static deflection as specified on the drawings. Isolators shall be selected by the manufacturer for non-resonance with the equipment forcing frequency and the building structure’s natural frequencies. Isolators shall be provided for suitable mounting to equipment and supporting structure.

F. Vibration isolators shall be furnished by Kinetics Noise Control, Mason, or equivalent.

2.2 EQUIPMENT BASES

A. Vibration isolation bases shall be supplied by the vibration isolation manufacturer as indicated on the drawings and as required for the application. Concrete for inertia bases shall be furnished and installed by the Contractor and shall comply with Division 3 requirements.

B. Structural steel bases shall be designed and supplied by the isolator manufacturer. Kinetics Noise Control Type SFB, or equivalent. Bases shall be designed with isolator brackets to reduce the mounting height of the equipment. To assure adequate stiffness, the height of the members shall be a minimum of 8% of the longest span between isolators, or at least 6 inches. Where thinner sections are necessary, due to head room limitations, etc., the section modules of the members selected shall equal or exceed the section modules of wide flange steel members whose thickness is 8% of the longest span between isolators.

C. Reinforced concrete inertia bases shall be designed by the isolation manufacturer who shall furnish the steel framework, Kinetics Noise Control, CIB, or equivalent. The Contractor shall furnish and install concrete, poured into the welded steel frame. The steel framework shall incorporate pre-located equipment anchor bolts, 1/2" diameter reinforcing bars on nominal 8" centers each way, and recessed isolator mounting brackets to reduce the mounting height of the equipment, but yet remain within the confines of the base. The thickness of the base shall be a minimum of 8% of the longest span between isolators, at least 6”, or as indicated on the drawings. Where inertia bases are used to mount pumps, the bases shall be wide enough to support piping elbows. Provide a minimum of 1-inch clearance between the bottom of the base and floor on housekeeping pad with equipment in place, in operation and with spring isolators properly adjusted.

2.3 FLEXIBLE CONNECTIONS

A. Flexible connections for piping systems shall be as specified in Section 23 0504. Flexible connection for fan equipment and flexible ductwork shall be as specified in Section 23 3000.

2.4 SEISMIC SNUBBER TYPES

B. Type A: Coil Spring Isolator Incorporated within a Ductile Iron or Cast Aluminum Housing:

1. Cast iron or aluminum housing are brittle when subjected to shock loading and are therefore not approved for seismic restraint applications.

C. Type B: Coil Spring Isolator Incorporated within a Steel Housing:
1. Spring isolators shall be seismic control restrained spring isolators, incorporating a single or multiple coil spring element, having all of the characteristics of free standing coil spring isolators as specified in the vibration isolation portion of this specification. Springs shall be restrained using a housing engineered to limit both lateral and vertical movement of the supported equipment during an earthquake without degrading the vibration isolation capabilities of the spring during normal equipment operating conditions.

2. Vibration isolators shall incorporate a steel housing and neoprene snubbing grommet system designed to limit motion to no more than 1/4" in any direction and to prevent any direct metal-to-metal contact between the supported member and the fixed restraint housing. The restraining system shall be designed to withstand the seismic design forces in any lateral or vertical direction without yield or failure. Where the capacity of the anchorage hardware in concrete is inadequate for the required seismic loadings, an adapter baseplate to allow the addition of more or larger anchors will be fitted to fulfill these requirements. In addition to the primary isolation coil spring, the load path will include a minimum 1/4" thick neoprene pad.

3. Spring elements shall be color coded or otherwise easily identified. Springs shall have a lateral stiffness greater than 1.2 times the rated vertical stiffness and shall be designed to provide a minimum of 50% overload capacity. Non-welded spring elements shall be epoxy powder coated and shall have a minimum of a 1,000 hour rating when tested in accordance with ASTM B-117.

4. To facilitate servicing, the isolator will be designed in such a way that the coil spring element can be removed without the requirement to lift or otherwise disturb the supported equipment.

5. Spring isolators shall be Model FHS or FMS Isolator/restraint as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

D. Type C: Coil Spring Isolator Incorporated within a Steel Housing:

1. Spring isolators shall be seismic control restrained spring isolators, incorporating one or more coil spring elements, having all of the characteristics of free standing coil spring isolators per the vibration isolation section of this specification, for equipment which is subject to load variations and/or large external forces. Isolators shall consist of one or more laterally stable steel coil springs assembled into fabricated welded steel housings designed to limit movement of the supported equipment in all directions.

2. Housing assembly shall be made of fabricated steel members and shall consist of a top load plate complete with adjusting and leveling bolts, adjustable vertical restraints, isolation washers, and a bottom load plate with internal non-skid isolation pads and holes for anchoring the housing to the supporting structure. Housing shall be hot dipped galvanized for outdoor corrosion resistance. Housing shall be designed to provide a constant free and operating height within 1/8".

3. The isolator housing shall be designed to withstand the project design seismic forces in all directions.

4. Coil spring elements shall be selected to provide static deflections as shown on the vibration isolation schedule or as indicated or required in the project documents. Spring elements shall be color coded or otherwise easily identified. Springs shall have a lateral stiffness greater than 1.2 times the rated vertical stiffness and shall be designed to provide a minimum of 50% overload capacity. Non-welded spring elements shall be epoxy powder coated and shall have a minimum of 1,000 hour rating when tested in accordance with ASTM B-117.

5. Spring isolators shall be Model FLSS as manufactured by Kinetics Noise Control, or by other manufacturers who can meet the requirements as specified herein.

E. Type D: Coil Spring Isolator Incorporated within a Steel Housing:

1. Spring isolators shall be lateral restrained spring isolators, incorporating a single coil spring element, having all of the characteristics of free standing coil spring isolators as previously specified. Springs shall be assembled into a welded steel housing engineered to limit lateral movement of supported equipment during an earthquake without degrading the vibration isolation capabilities of the spring during normal equipment operating conditions.
isolation capabilities of the spring during normal operating conditions.

2. Vibration isolators shall incorporate a steel angle and plate motion limiting assembly and steel coil spring, designed as a system to accept a force in any lateral direction in excess of the design seismic requirement for the isolator without yield or failure. Isolator shall limit lateral movement of the equipment to less than 1/4" in any direction. The lateral limit stop shall incorporate a neoprene grommet to prevent the potential for metal-to-metal contact. The vibration isolation element shall include a 1/4" thick ribbed neoprene noise stop pad, positioned outside of the housing anchorage path. The housing shall incorporate drilled holes for attachment to the supporting structure.

3. Spring isolators shall be Model FYS as manufactured by Kinetics Noise Control, or by other manufacturers who can meet the requirements as specified herein.

F. Type E: All Direction Neoprene Isolator:

1. Vibration isolators shall be neoprene, molded from oil resistant compounds, designed to operate within the strain limits of the isolator so to provide the maximum isolation and longest life expectancy possible using neoprene compounds. Isolators shall include encapsulated cast-in-place top steel load transfer plate for bolting to equipment and a steel baseplate with anchor holes for bolting to the supporting structure. Ductile iron or cast aluminum components are not acceptable alternatives and shall not be used due to brittleness when subjected to shock loading.

2. Isolator shall be capable of withstanding the design seismic loads in all directions with no metal-to-metal contact.

3. Isolator shall have minimum operating static deflections as shown on the project vibration isolation schedule or as otherwise indicated in the project documents and shall not exceed published load capacities.

4. Neoprene isolators shall be Model RQ as manufactured by Kinetics Noise Control, or by other manufacturers who can meet the requirements as specified herein.

G. Type F: All Direction External Seismic Snubber Assembly:

1. Equipment shall be restrained against excessive movement during a seismic event by the use of 3-axis resilient snubbers, designed to withstand the project required seismic forces.

2. Snubbers shall be of welded steel construction and shall be attached to the equipment structure and equipment in a manner consistent with anticipated design loads. Snubbers shall limit lateral and vertical equipment movement at each snubber location to a maximum of 1/4" in any direction.

3. Snubbers shall include a minimum of 1/4" thick resilient neoprene pads to cushion any impact and to avoid any potential for metal-to-metal contact. Maximum neoprene bearing pressure shall not exceed 1500 pounds/Sq. Inch. Snubber shall be installed only after the isolated equipment is mounted, piped, and operating so as to ensure that no contact occurs during normal equipment operation.

4. Three-axis seismic snubbers shall be Model HS-5/7 as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

H. Type G: All Direction Lateral External Seismic Snubber Assembly:

1. Equipment shall be restrained against excessive lateral movement during a seismic event by the use of 2-axis horizontal resilient snubbers, designed to withstand the project required seismic forces.

2. Snubbers shall be of welded steel construction and shall be attached to the equipment structure and equipment in a manner consistent with anticipated design loads. Snubbers shall limit lateral equipment movement at each snubber location to a maximum of 1/4".

3. Snubbers shall include a minimum of 1/4" thick resilient neoprene pads to cushion any impact and to avoid any potential for metal-to-metal contact. Snubber shall be installed only after the
isolated equipment is mounted, piped and operating so as to ensure that no contact occurs during normal equipment operation.

4. Two-axis lateral seismic snubbers shall be Model HS-2 as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

I. Type H: Two-Axis External Seismic Snubber Assembly:

1. Equipment shall be restrained against excessive vertical and horizontal movement during a seismic event by the use of 2-axis resilient snubbers, designed to withstand the project required seismic forces. A minimum of four (4) snubbers are to be used at each equipment installation, oriented to effectively restrain the isolated equipment in all three directions.

2. Snubbers shall be of welded steel construction and shall be attached to the equipment structure and equipment in a manner consistent with anticipated design loads. Snubbers shall limit lateral and vertical equipment movement at each snubber location to a maximum of 1/4" in any direction.

3. Snubbers shall include resilient neoprene pads within a minimum thickness of 1/4" to cushion any impact and to avoid any potential for metal-to-metal contact. Snubber shall be installed only after the isolated equipment is mounted, piped, and operating so as to ensure that no contact occurs during normal equipment operation.

4. Two-axis seismic snubbers shall be Model HS-4 as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

J. Type I: Single-Axis External Seismic Snubber Assembly:

1. Equipment shall be restrained against excessive horizontal one-axis movement during a seismic event by the use of single-axis resilient snubbers, designed to withstand the project required seismic forces. A minimum of four (4) snubbers are to be used at each equipment installation, oriented to effectively restrain the isolated equipment in all lateral directions.

2. Snubbers shall be of welded steel construction and shall be attached to the equipment structure and equipment in a manner consistent with anticipated design loads. Snubbers shall limit lateral equipment movement at each snubber location in the direction of impact to a maximum of 1/4".

3. Snubbers shall include resilient neoprene pads within a minimum thickness of 1/4" to cushion any impact and to avoid any potential for metal-to-metal contact. Snubber shall be installed only after the isolated equipment is mounted, piped, and operating so as to ensure that no contact occurs during normal equipment operation.

4. Single-axis seismic snubbers shall be Model HS-1 as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

K. Type J: Cable Restraints for Suspended Piping and Ductwork:

1. Seismic wire rope cable restraints shall consist of steel wire strand cables, sized to resist seismic loads, arranged so to offer seismic restraint capabilities for piping, ductwork, and suspended equipment in all lateral directions.

2. End connection fittings shall be designed to swivel in order to ensure proper cable alignment and to avoid bending of rope. Protective thimbles shall be used at connection points so to eliminate bending cable across sharp edges.

3. Anchoring hardware at each end of the cable shall be designed so to exceed the working project design load of the wire cable by a minimum of 50 percent.

4. Seismic cable restraints shall be Model SCR as manufactured by Kinetics Noise Control, or by other manufacturer’s who can meet the requirements as specified herein.

2.5 SEISMIC RESTRAINTS

A. Seismic restraints shall be furnished and installed as specified herein and as required. Installation of all
seismic restraint materials specified herein shall be accomplished following the manufacturer’s written instructions. Installation instructions shall be submitted to the Engineer for approval prior to the beginning of the work.

B. All mechanical equipment not mounted on spring isolators shall be provided with seismic restraints, as specified and detailed on the drawings, designed to restrain movement in vertical and horizontal directions during a seismic condition.

C. All ductwork, piping systems, and suspended equipment including air terminal units shall be supported to resist seismic forces in accordance with SMACNA guidelines or by means of an approved bracing system equivalent to Kinetics, Pipe Shields Incorporated, or Mason. The seismic restraint manufacturer shall provide documentation on maximum restraint spacing for various cable sizes and anchors, as well as worst case reaction levels at restraint locations.

D. All seismic snubber restraint assemblies shall meet the following minimum requirements:

1. Impact surface should have a high quality elastomeric facing so to ensure that no metal-to-metal contact can occur.
2. Resilient material should be easy to visually inspect for damage and be replaceable if necessary.
 a. Resilient material used in snubber assemblies to be a minimum of 0.25" thick.
 b. Resilient material used in snubber grommets to be a minimum of 0.12" thick.
3. Assembly must be designed to offer seismic restraint in all directions, unless otherwise noted below.
4. Clearance between resilient material and contacting isolated equipment surface must not exceed 0.25".
5. Seismic restraints capacities to be verified by an independent test laboratory or certified by a registered State of [___________] Structural Engineer who is experienced in seismic restraint design to ensure that the design intent of this specification is realized.

E. The Contractor shall ensure that all housekeeping pads used are adequately reinforced and are properly attached to the building structural flooring, so to withstand anticipated seismic forces. In addition, the size of the housekeeping pad is to be coordinated with the seismic restraint manufacturer so to ensure that adequate edge distances exist in order to obtain desired design anchor capabilities.

PART 3 - EXECUTION

3.1 GENERAL

A. All mechanical equipment scheduled on the drawings shall be isolated from building structure by means of resilient vibration and noise isolators supplied by a single manufacturer to the Contractor. The isolator manufacturer shall submit a tabulation of the design data on the isolators including spring O.D., free operating and solid heights of springs, free and operating heights of neoprene isolators. Static deflection scheduled is the minimum acceptable and represents the static deflection required based on the combined weight of the equipment; motor bases and any other accessories specified in the mechanical equipment schedule. Isolation bases shall be furnished by the Vibration Isolator Manufacturer. Vibration isolation system shall have a maximum lateral motion under equipment start-up and shutdown conditions of 1/4-inch. Restraining excess motion by spring type mountings. Connections to equipment shall allow for deflections equal to or greater than equipment deflections.

B. Seismic restraints shall be in accordance with the State of New Mexico requirements and the Uniform
Building Code, and shall be designed to resist seismic forces of magnitudes as specified herein. Installation of seismic restraints shall follow SMACNA guidelines.

C. The Contractor shall coordinate the installation of the vibration isolation and seismic restraint devices with all trades and subcontractors. Contractor shall verify with the Architect that the devices and supports are adequate as intended and do not overload the building structural components in any way. The exact method and means of connection of the mechanical system to the building structural system shall be approved by the Architect.

D. Installation of all seismic restraint materials specified in this section shall be accomplished as per the manufacturer’s written instructions.

E. Upon completion of installation of all seismic restraint materials and before start up of restrained equipment, all debris shall be cleaned from beneath all protected equipment, leaving equipment free to contact snubbers.

F. No rigid connections between the equipment and the building structure shall be made which degrades the seismic restraint system herein specified. All electrical conduit to restrained equipment shall be looped to allow free motion of equipment without damage to the electrical wiring.

3.2 EQUIPMENT CONNECTIONS

A. No rigid connections between equipment and building structure shall be made that degrades the noise and vibration isolation system herein specified.

B. Electrical circuit connections to isolated equipment shall be looped to allow free motion of isolated equipment; see Division 26.

C. Coordinate work with other trades to avoid rigid contact with the building. Inform other trades following work, such as plastering or electrical, to avoid any contact which would reduce the vibration isolation.

3.3 EQUIPMENT ISOLATORS

A. The minimum operating clearance between the equipment frame or the equipment vibration base frame and the housekeeping pad or floor shall be 1”.

B. The equipment vibration base shall be placed in position and supported temporarily by blocks or shims, as appropriate, prior to the installation of the machine or isolators.

C. After the entire installation is complete and under full operational load, the isolator shall be adjusted so that the load is transferred from the blocks to the isolator. When all isolators are properly adjusted, the blocks or shims shall be free and shall be removed.

D. Isolator static deflection shall be (minimum) as specified or scheduled on the Drawings.

E. Position all corner or side seismic restraints with equipment operation for proper operating clearance and weld or bolt seismic restraint to seismic anchor plates in housekeeping pad.

F. Install equipment with flexibility in piping and wiring connections.

G. Verify all installed isolators and mounting systems permit equipment motion in all directions. Adjust or provide additional resilient restraints to limit start-up equipment lateral motion to 1/4".
H. Prior to start-up, clean out all foreign matter between bases and equipment. Verify that there are no isolation short circuits in the base, isolators or seismic restraints.

3.4 SEISMIC RESTRAINT FOR PIPING

A. Seismically restrain all piping listed below. Use Type ‘J’ cable restraints for all piping supported by vibration isolation hanger assemblies, including:

1. Natural gas piping, medical gas piping, vacuum piping, petroleum based liquid piping, and compressed air piping equal to or greater than 1" in inside diameter.
2. All piping located within mechanical equipment and service rooms equal to or greater than 1-1/4" in inside diameter.
3. All other piping equal to or greater than 2-1/2" in inside diameter.

3.5 SEISMIC RESTRAINT FOR DUCTWORK

A. Seismically restrain all ductwork listed below. Use Type ‘J’ cable restraints or equivalent for all ductwork, including:

1. All rectangular and oval ducts with cross sectional area equal to or greater than 6 square feet.
2. All round ducts with diameters equal to or greater than 28”.

3.6 SEISMIC RESTRAINT FOR FIRE PROTECTION PIPING

A. Fire protection, sprinkler piping and related equipment is considered as ‘Life Safety Equipment’ and shall be seismically restrained per guidelines as published by NFPA (National Fire Protection Association) as specified in Division 21.

3.7 PIPING, DUCTWORK AND CONDUIT EXCLUSIONS

A. Per the IBC (International Building Code), piping and ductwork which have diameter or cross sectional areas less than those noted in Sections 3.4, 3.5, and 3.6 do not require additional seismic restraint over and above the normal suspension hardware.

3.8 INSPECTION

A. The Contractor shall notify the local representative of the seismic restraint materials manufacturer's representative prior to installing any seismic restraint devices. The Contractor shall seek the representative’s guidance in all installation procedures.

B. The local representative of the seismic restraint and snubber materials manufacturer shall conduct periodic inspections, minimum of monthly during construction period for equipment, piping and ductwork seismic restraint system installation. Inspection reports shall be in writing to the Contractor any deviations from good installation practice observed. These reports shall be forwarded to the Architect for review.

C. On completion of installation of all seismic restraint and vibration isolation devices herein specified, the
vibration isolation manufacturer shall inspect the completed system and submit an inspection report to the Architect. This report shall identify any installation error, improperly selected isolation devices, or other problems that could affect the performance of the system. The manufacturer's report shall include recommendations for any actions required to properly complete the vibration isolation and seismic restraint work. The cost of the inspection shall be included in the contractor’s bid price.

D. The installing Contractor shall submit a final report to the Project Architect and/or Engineer, including the manufacturer representative's final report, certifying that all seismic restraint material has been properly installed, or steps to be taken by the Contractor to properly complete the seismic restraint work per the specifications.

END OF SECTION
SECTION 230549 - HVAC AND ELECTRICAL INSTALLATION COORDINATION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 RELATED DIVISIONS AND SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.
B. Section 23 0900, Facility Management System.
C. Division 26 for Electrical.
D. Division 28 for Electronic Safety and Security.

1.3 SCOPE

A. It is the intention of this section to summarize the coordination of effort defined in the related sections and divisions of this specification.
B. If there is a conflict between this Section and other Sections and Divisions of this specification, this Section shall be the governing and decisive Section.
C. Make all connections to motors and controls for equipment supplied and/or installed under Division 23 according to Table 1 on the following page.

PART 2 - PRODUCTS

Not Applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

A. No work shall be performed until the reviewed and marked submittal data have been reissued to the Contractor, unless written permission is obtained from the Architect.
TABLE 1

<table>
<thead>
<tr>
<th>Item or System</th>
<th>Note</th>
<th>Supplied By</th>
<th>Installed By</th>
<th>Powered By</th>
<th>Control Field Wiring By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Motors</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Motor Control Center Including Starters, Pilot Lights, Heater, Switches, Auxiliary Contacts, and Internal Control Wiring</td>
<td></td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Stand Alone Motor Starters (outside motor control centers)</td>
<td>(1)</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Variable Frequency Drives (VFD's)</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Fused and Non-Fused Disconnects</td>
<td>(1)</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Control Relays & Control Transformers</td>
<td>(1)</td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Central Plant/Refrigeration Equipment Room Emergency Shutdown & Ventilation</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Cooling Tower Vibration Switches</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Boilers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Refrigeration Gas Monitor</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Kitchen Make-up System & Hood Exhaust Fans</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 26</td>
</tr>
<tr>
<td>Kitchen Exhaust Hoods & Lab Fume Hoods</td>
<td></td>
<td>Div. 11</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Kitchen Hood Fire Protection System</td>
<td></td>
<td>Div. 11</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Kitchen Hood Natural Gas Shut-Off Valve</td>
<td></td>
<td>Div. 11</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Fan Coil Units Including, Return Air Dampers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Water Chillers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Min. Outside Air Units Including Mixing Dampers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Rooftop A/C Units Including Mixing Dampers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 23</td>
</tr>
<tr>
<td>HVAC Unit Smoke Detectors</td>
<td></td>
<td>Div. 28</td>
<td>Div. 23</td>
<td>Div. 28</td>
<td>Div. 28</td>
</tr>
<tr>
<td>Fire/Smoke Control Dampers & Smoke Dampers</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 28</td>
</tr>
<tr>
<td>Fan Coil Unit Condensate Float Switches</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>N/A</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Supply, Return & Exhaust Fan with unit mounted 115 VAC 2-position damper actuators interlock with fan motor/starter</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Non-FMS Control Devices Including Wall Switches, Timers, Thermostats</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>Div. 26</td>
</tr>
<tr>
<td>Chemical Treatment Systems</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Cooling Tower Sand Filter Units</td>
<td></td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 26</td>
<td>N/A</td>
</tr>
<tr>
<td>Facility Management System (FMS)</td>
<td>(2)</td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 23</td>
<td>Div. 23</td>
</tr>
<tr>
<td>Facility Management System - Light Controls</td>
<td></td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
<td>Div. 26</td>
</tr>
<tr>
<td>Fire Alarm System & Interface w/HVAC System</td>
<td></td>
<td>Div. 28</td>
<td>Div. 28</td>
<td>Div. 28</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE NOTES:

1. Unless specified to be supplied with the equipment
2. Division 26 shall provide 120 VAC power to each mechanical space and the central plant as indicated on the drawings. Any additional power, transformers, and distribution shall be provided by the Section or Division indicated.
3. Division 23 indicates the HVAC contractor or their designated representative including equipment suppliers, sub-contractors, etc.

END OF SECTION
SECTION 230593 - TESTING, ADJUSTING AND BALANCING OF MECHANICAL SYSTEMS

PART 1 - GENERAL

1.1 GENERAL

B. Testing, adjusting and balancing (TAB) shall be performed by a TAB Agency which is independent of the Mechanical Contractor.

C. The TAB Agency’s efforts shall be paid for by the Contractor and included in the mechanical contract price.

D. Unless specifically noted, all work specified in this section shall be included in the scope of the TAB Agency’s work. But some work described in this section is to be performed by the mechanical contractor, controls contractor, or others, and that work is specifically noted to be by these entities.

1.2 SCOPE

A. Provide TAB for the systems and equipment installed under Division 23, including but not limited to:

1. Supply and exhaust air systems including process and kitchen systems.
2. Return air where specifically noted.
3. Hydronic systems including domestic HW return systems.

B. Provide all labor, instruments, and tools necessary to test, adjust and balance the systems shown on the drawings and/or described in these specifications. Check equipment performance, take measurements, adjust systems and equipment to provide specified performance, and report results. Submit reports to keep all parties posted on the progress of the TAB work.

C. Where the TAB effort indicates deficiencies in system performance, TAB Contractor shall take the lead in a collaborative effort to trouble-shoot and resolve these deficiencies. Engage the assistance of others where necessary, starting with the Mechanical Contractor and Controls Subcontractor. Take additional measurements as required to identify the cause of the deficiencies, perform additional TAB as required to bring the system in compliance with the design intent. Engage the assistance of the Engineer and others where necessary. Indicate final setpoints and readings in a final TAB report.

D. Include three days of effort on site for tests and/or balancing as directed in writing by the Owner’s Representative beyond that described herein, but prior to substantial completion.

E. Include two days on site for TAB efforts as directed in writing by the Owner’s Representative after substantial completion.

1.3 STANDARDS AND DEFINITIONS

A. Perform all work in accordance with these specifications and the latest edition of the NEBB Standards.

B. Air Handling Unit: Where the term Air Handling Unit (AHU) is used in this spec section, it shall include any factory fabricated or field erected unit that includes a fan and other components which filter, heat, cool, humidify or dehumidify the air stream. But the term AHU, where used in this section, does not include fan powered terminal units, fan coil units, unit heaters, cabinet unit heaters, etc.
C. Air Handling System: A fan or AHU and ductwork.

D. Hydronic System: A system in which a liquid is used to convey heat.

E. Record or Report: Where used as a verb, these terms mean to include in the TAB report.

1.4 QUALIFICATIONS

A. TAB agencies shall meet the following qualifications:

1. Membership in the Associated Air Balance Council (AABC), National Environmental Balance Bureau (NEBB) or the Testing, Adjusting and Balancing Bureau (TABB).
2. An office located within a 100 mile radius of the project site.
3. A minimum of five (5) years experience in the TAB field.

B. The following TAB Agencies are prior approved:

NEW MEXICO
1. Energy Balance & Integration
2. Kirk Air Co.
3. Native Air
4. N-Demand Test and Balance LLC
5. Air Moving Equipment Company

ARIZONA
1. Technical Air Balance
2. Arizona Air Balance
3. Precisionaire

1.5 SUBMITTALS

A. Mechanical Contractor shall submit the name of the proposed TAB agency prior to the TAB agency performing any services.

1. Submit a list of proposed personnel, including resumes with related project experience and certifications.
2. Submit proposed TAB procedures, instrumentation and measurement equipment including calibration data, and proposed sample TAB report forms.

B. Pre-Construction Report: Prior to the Mechanical Contractor installing the systems, the TAB Agency shall submit a letter indicating whether the design includes all devices the TAB Agency will need to successfully perform the TAB work. If any additional balancing devices are needed, the TABB Agency shall so note this in the pre-construction report.

C. Submit TAB reports as noted herein. Reports shall be in both hard copy and PDF format.

1.6 TAB PREPARATION AND COORDINATION

A. Mechanical Contractor shall perform the following in a timely fashion:

1. Provide the TAB Agency with the project documentation (drawings, specifications, bulletins, submittals, shop drawings, etc.) necessary to perform the TAB services.
2. Install, fill, pressure test, start up, clean, and the vent systems to be tested and balanced.

B. Controls Subcontractor shall perform the following in a timely fashion:

1. Install and make operational all necessary control systems and equipment, including computers.
and computer programs.

2. Provide qualified personnel to operate the systems as necessary to support the TAB effort. Provide the TAB contractor with the computer software necessary to facilitate the TAB effort.

3. Assist as required to resolve problems which become evident due to TAB work, and as required to obtain specified system performance.

PART 2 - PRODUCTS

2.1 EQUIPMENT

A. Provide all equipment and instruments necessary to perform the work specified herein. Calibrate and maintain instruments per NEBB Standards. Provide not less than the following:

1. Pitot tubes and draft gauges.
2. Flow hood.
3. Velometer.
4. Thermometers.
5. Pressure gauges.
8. Speed indicator.
9. Sound meter to measure eight octave bands.

PART 3 - EXECUTION

3.1 GENERAL

A. Review and inspect the mechanical systems for conformance with design documents. Test, adjust and balance all system flows under design conditions and under other conditions where part load testing is specified. Comply with measurement tolerances per NEBB. Balance to within 10% of design flows unless otherwise specified.

B. Visually mark the final settings of balancing dampers, balancing valves, fan speed controls, etc.

C. Comply with NEBB Standards. The descriptions included herein are a guide to the minimum information needed.

D. Troubleshooting: In the event that any areas fail to get proper flow, take the lead in troubleshooting the system. Measure pressures, flows, etc. at various points throughout the systems as required to identify the cause of the deficiencies and identify upgrades which will resolve these deficiencies. Coordinate any remedial efforts directly with mechanical and controls contractors and re-test as required.

3.2 TEST AND BALANCE REPORT

A. Report shall be 8-1/2" x 11" bound into a complete and coherent report, except that drawings may be larger size, but still bound into the report. All forms shall be typewritten or legibly handwritten.

B. Include the following sections in the order indicated:

1. Cover sheet with the Project Name, Location, and the names of the Mechanical Contractor and Engineer
2. Table of Contents
3. Summary indicating the highlights of the report and summarizing any deficiencies and
recommendations
4. Test results including the names of the persons performing the tests and dates the tests were performed
5. Drawings
6. Description of the test procedures used
7. List of instruments used along with their calibration data
8. Qualifications of personnel

C. Submit five copies and a PDF of the complete TAB report minimum two weeks before the first O&M instruction session. One copy will be returned to the Contractor with review comments.

3.3 BASIC AIR HANDLING SYSTEM TESTING, ADJUSTING AND BALANCING

A. General
1. Test all fans and air handling systems. Balance systems to achieve specified air flows while minimizing throttling losses.
2. Air Flow Measurements: Fan and AHU flow rates may be determined by pitot tube traverse or by measuring fan speed, suction and discharge pressures, and comparison with the fan curve. Measure duct air flows using pitot tube traverses. Measure air flows of grilles, registers and diffusers using either capture hoods or pitot tube traverses in the connected ductwork. Make such other tests as may be required to demonstrate that systems perform per the design requirements.
3. Air Flow Measuring Stations: Calibrate each air flow measuring station which is provided as part of the construction contract. Use duct pitot tube traverses or other appropriate means to measure air flows. Coordinate with the flow measuring station supplier, and enter calibration coefficients into the FMS. Record the results of this effort.
4. Alert Mechanical Contractor and Engineer if any fan or air handling unit (AHU) appears to be operating in an improper or unsafe condition.
5. Seal all test holes in ductwork once testing is complete. Repair insulation jackets to maintain the integrity of the vapor barrier.
6. Include in the report copies of ductwork drawings with test points indicated.
7. Variable Flow Systems: Verify proper fan tracking from full flow to 50% flow.

B. Fans: Perform the following for all fans, including those provided as part of an AHU.
1. Fan Nameplate: Record unit number per the equipment schedule, manufacturer, model, size, and serial number.
2. Performance Data: Measure air flow and adjust fan speed to achieve required flow. Record air flow, static pressure rise and fan speed.
 a. Advise when belt and/or sheave changes are required to achieve the design flows. Mechanical contractor shall make the necessary changes as part of the mechanical contract. Approximately 25% of fans may require a sheave and/or belt change.
3. Current and Voltage: Record motor nameplate and measured voltage and amperage. Advise if motor amps exceed rated load amps.

C. Air Handling Units:

1. Outside Air: Test outside air flows using a pitot tube traverse and balance as required. If a traverse is not practical, use the mixed air temperature method if the inside and outside temperature difference is at least 20 deg F, or use the difference between pitot tube traverses of the supply and return air ducts.
2. Static Pressure: Measure and record the static pressure at the inlet and outlet of each AHU component, including louvers, dampers, filters, coils, etc, and at each inlet and discharge duct connection.

D. Coils: Measure and record air and water flows and pressure drops.

E. Air Distribution Systems:

1. Zone, Branch and Main Ducts:
 a. Adjust to within 10% of design air flows. Balance so that at least one zone balancing damper is wide open. Balance multi-diffuser branch ducts so that at least one outlet or inlet damper is wide open.

2. Air Terminal Units:
 a. Calibrate flow sensors and enter design maximum and minimum flow setpoints into FMS.
 b. Record terminal unit number, size, specified flow, agency measured flow, FMS measured flow, and DDC flow correction factors.

3. Diffusers, Registers and Grilles:
 a. Test, adjust, and balance each diffuser, grille, and register to within 10% of specified design requirements. Record the size of each grille, diffuser, and register, initial flow measurement, and final measured flow.
 b. Where rooms are indicated to be maintained at either positive or negative pressure, balance air flows to achieve these conditions under design flow conditions, and verify proper pressurization at minimum flow.

F. Fan Coil Units, Unit Heaters, Cabinet Unit Heaters, Air Curtains, Door Fans, Fan Powered Terminal Units and other devices with fans and coils:

1. For each unit, record unit number, manufacturer, model, size, motor HP, voltage and rated load amps and design air flow.
2. Measure and record initial air flows, along with final air flows, unit inlet and outlet static pressures, voltages, and motor amps.
3. Measure and record initial and final water flows and pressure drops.

G. Energy Recovery Units:

1. For each unit, record unit number, manufacturer, model, size, motor HP, voltage and rated load amps and design air flow.
2. Measure and record initial air flows, along with final air flows, unit inlet and outlet static pressures, voltages, and motor amps.
H. Duct Leakage Testing

1. Specification Section 23 3000 describes the requirements for duct leakage testing. Provide all instrumentation and labor to take the required measurements.
2. The Mechanical Contractor shall provide the fans and all other required work.

3.4 HYDRONIC SYSTEMS

A. General:

1. Prior to commencing hydronic balance:
 a. Set valves to proper position per the sequence of operation. Open all coil valves to full open position. Set 3-way valves to full flow through system component.
 b. Check pump rotation.
 c. Verify that system is adequately pressurized.
 d. Set temperature controls so all system components deliver maximum flow.
 e. Balancing may be done in sections.

2. Pumping Systems: Measure flows and determine operating characteristics of hydronic systems with pumps operating both independently and in parallel (where applicable). Make measurements at maximum flow.

3. Balance systems to minimize throttling out in the distribution, and to instead throttle at the pump discharge. Recommend impeller trimming if appropriate.

4. Measure and report performance readings on all pumps, coils, heat exchangers, heating and cooling water generating equipment, flow measurement devices, heat rejection equipment, etc. Measure and record the following for each item of hydronic equipment:
<table>
<thead>
<tr>
<th>Eqpt Type</th>
<th>Pumps (Note 1)</th>
<th>Chillers</th>
<th>Air Cooled Condensers</th>
<th>Cooling Towers</th>
<th>Hot Water Boilers</th>
<th>Steam Boilers</th>
<th>Heat Exchangers</th>
<th>Coils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag No.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mfg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Serial</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Volts</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Refrigerant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPM1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Press Drop</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GPM2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press Drop</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPM1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Inlet Press</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Outlet Press</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Press Drop</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GPM2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Press</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outlet Press</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press Drop</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volts</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Amps</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. For pumps measure pressure rise instead of pressure drop. Measurements for GPM2 shall be at shutoff conditions.

5. Domestic HW return system: Balance to ensure HW availability throughout the system. Where balancing valves are provided, record flow and balance to provide flow in each circuit.

3.5 LIMIT DEVICES AND SAFETY CONTROLS

A. Limit Devices: Check all limit devices to verify proper operation, including, freezestats, flow switches, etc. Include in the TAB report a list of all such devices and the results of their tests.

B. Fire and Smoke Dampers

1. Test each fire damper, smoke damper, and fire/smoke damper to ensure proper operation. Record test results.

2. Fire Dampers: Open access door, disconnect fusible link or activate thermal link, and verify that damper closes smoothly and completely. Reset damper and access door.

3. Smoke Dampers: Open access door, activate damper, observe whether it closes smoothly and completely, and measure closing time. Reset damper and verify it opens completely. Close access door and record test results.
C. Life Safety Controls: Test and record life safety control operation of the HVAC systems. Verify the installation of required smoke detectors in air handling equipment, and verify operation of the smoke detector by activating the smoke detector and observing air handler shutdown or other required functions as described on the control drawings and sequence of operation. With assistance from the contractors for mechanical, temperature controls and electrical work, verify the operation of interconnected systems, such as the smoke detector's activation of the fire alarm system and the alarm system's activation of the life safety control sequence.

3.6 SOUND TESTING

A. Measure sound level in approximately ten percent of rooms as directed by Engineer.

 1. Shut off mechanical equipment and measure background sound level in each octave band.
 2. Start mechanical equipment and measure sound level in each octave band.
 3. Submit a plot of measured data against noise criteria (NC) curves.

B. Where measured sound levels are deemed by Owner to be unacceptable, work with Engineer and Mechanical Contractor to reduce actual levels, and retest as required.

3.7 AIR HANDLING SYSTEMS – SPECIAL APPLICATIONS

A. Rooms Requiring Air Flow Tracking and/or Active Room Pressure Control:

 1. Calibrate flow sensors for all supply and exhaust air devices serving the room, and enter design maximum and minimum flow setpoints into FMS.
 2. Calibrate room pressure sensor.
 3. Verify proper air flow tracking and room pressure control as the system operates from maximum to minimum, and back to maximum flow.
 4. Submit a separate sheet in the report for each such room. Include an air flow diagram showing each device in the air flow and control system, and record all pertinent design and measured data on this sheet, including but not limited to:

 a. Air valves: Tag number, size, specified flow, agency measured flows and FMS measured flows at various flow conditions, and DDC flow correction factors.
 b. Offset air flows and room pressures at various flow conditions.

B. Rooms to be Balanced to a Positive or Negative Pressure (Without the Use of Air Flow Tracking or Active Pressure Controls):

 1. Balance supply and return air flows as required
 2. Crack open the door and use a smoke puffer to demonstrate the direction of air flow. Test under maximum and minimum flows. Record test results.

C. Room Tightness Testing:

 1. Where a room tightness test is specified, provide the instrumentation and labor to perform such test.
 2. The Mechanical Contractor shall provide the fans and associated ductwork for the test.
 3. Submit test report. Retest until room complies with room leakage criteria.

D. Fume Hoods and Biological Safety Cabinets: Test exhaust airflow by duct pitot tube traverse, and adjust exhaust air valve to control to within 5% of design flow. Balance makeup air flows as specified above.
Test for turbulence and proper air flow patterns at the face and inside hoods using a smoke puffer or other approved smoke-emitting device. Document the test results, and advise of any concerns and recommendations.

E. Kitchen Hood Exhaust Systems

1. Air Flows: Test the exhaust air flow of each kitchen hood, and at each hood outlet connection. Use duct pitot tube traverses. Adjust fan speed as required to achieve design air flows. Adjust makeup air systems as required.

2. Capture Characteristics: For each Type 1 hood, set a smoke emitting device in several locations (minimum one location per four foot hood length, but not less than two locations per hood) and observe capture characteristics. Adjust makeup air system to optimize capture characteristics. Record test results.

3. Sealing test holes: After testing the Mechanical Contractor shall properly seal all test holes in the exhaust duct.

F. Building/Zone Pressurization: Test and adjust building/zone pressurization by setting the design flows to meet the required flow direction and pressure differential. For positive pressure areas, set the supply air to design flow, and gradually reduce the exhaust air rate to obtain the required flow or pressure difference. For negative pressure areas, set the supply air to design flow, and gradually increase the exhaust air rate to obtain the required flow or pressure difference.

G. Smoke Control Systems

1. General:
 a. Test smoke control systems in the presence of the Owner’s Representative and the Authority Having Jurisdiction (AHJ). Clearly document all test conditions. Record video of all tests, and include this recording in the final documentation.
 b. Initial checkout: Activate the smoke control system to determine that the smoke detectors, fans, dampers, and other components function properly. Correct any problems encountered before proceeding with tests below.

2. Follow the requirements, recommendations, and guidelines of the AHJ. In the event that no such guidelines are available, do the following:
 a. Notify all appropriate agencies of the time, date, and location of the smoke removal test.
 b. Place smoke generating devices in required areas in preparation for the test.
 c. When all required parties are present, the smoke removal tests and shutdown will commence.
 d. Activate smoke generation equipment. (Superior Five-Minute Smoke Bomb, 100,000 cubic feet of smoke, or equivalent.)
 e. Observe smoke movement and record time required for exit signs to become clearly visible and time required to effectively clear space of smoke.
 f. Record the time it takes for the standby power system to restore power.
 g. Verify automatic activation by smoke detectors. Record data, time, etc.
 h. Videotape sequence until exit signs are clearly visible.

3. After the automatic test is completed as described above (test in which the smoke control system is activated by the fire alarm system), run a second test with manual activation at the Fire Command Station. Record time until exit signs are clearly visible again.
4. Stairwell Pressurization: Pressure shall not exceed 0.5" and shall be a minimum of .15" (test both stairs). Measure and record differential pressure from top at each level, all the way to the lowest level. Open two doors at mid-level and recheck pressure differential at top and lowest levels.

5. Confirm the following in writing prior to final testing:
 a. The building HVAC systems have been properly balanced and are in proper operation.
 b. A manual method of activating the smoke control system is installed in a location approved by the fire department.
 c. Smoke removal equipment functions with both normal and standby power.

6. Results: Record video indicating the duration of smoke test; delay time from smoke bomb ignition to activation of the smoke removal system; time when exit signs again become visible, and other data required by the AHJ.

END OF SECTION
SECTION 230700 - MECHANICAL SYSTEMS INSULATION

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Supplemental General Conditions and General Requirements.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.
B. Section 23 0504, Pipe and Pipe Fittings.
C. Section 23 3000, Air Tempering System and Equipment.

1.3 SCOPE

A. Field insulation of piping: see drawings and Part 3 of this specification.
B. Field insulation of ductwork: See drawings, Table 23 0700-1, and Part 3 of this specification.
C. Field insulation of equipment supplied and/or installed under Division 23: See drawings and Part 3 of this specification.
D. Factory-insulated equipment and materials are described on the equipment schedule, on the drawings, and in other sections of this specification.

1.4 SUBMITTALS

A. Submit products to be used including insulation, jackets, miscellaneous products, and products for special applications. Review each application and advise if any product is either not suitable for, or not recommended for the application.
B. Verify that each submitted product meets all requirements for that product as specified herein. Include literature that clearly shows products meet all aspects of the spec. Include a cover sheet or letter with the following statement:

 “Each product submitted here meets all specified requirements for that product except as follows:” followed by a list of any discrepancies.

C. Submit schedules showing the type of product and thickness for each application. Indicate products to be used on valves and fittings. Indicate where vapor barriers will be provided and what jackets will be used.

D. D-5, D-6 & D-7 insulation: If one of these insulations is specified, submit documentation indicating that the submitted materials are approved for the intended service.

E. Submit a description of the application techniques to be used.
1.5 QUALITY ASSURANCE

A. Comply with the latest edition of the National Commercial & Industrial Insulation Standards, as published by the Midwest Insulation Contractors Association.

B. Part 3 and Table 23 0700-1 give the system temperatures for various applications. Supplier shall review these temperatures and confirm the suitability of all components for the specified applications.

C. Test piping and ductwork in accordance with applicable specification sections before insulation is applied.

PART 2 - PRODUCTS

2.1 GENERAL

A. All materials must be 100% asbestos-free and 100% formaldehyde-free, NO EXCEPTION.

B. All materials must be GreenGuard Gold Certified.

C. Smoke and Fire Ratings: All materials shall have a composite fire and smoke hazard rating not exceeding flame spread 25, fuel contribution 50, smoke developed 50, when tested as assemblies per ASTM Standard E-84 or NFPA 255.

D. Thermal conductivities: Per ASTM C518. Do not exceed the conductivities indicated. Units listed herein for conductivity are Btuh-in/SF-F. Resistance shall not be less than the values specified herein. Units for resistance are SF-F/Btuh.

E. Noise Reduction Coefficients: Per ASTM C423 based on Type A mounting. NRC shall not be less than as specified.

F. Jackets: Maximum 0.02 perm water vapor transmission per ASTM E96 Procedure A.

 1. ASJ: All service jacket per ASTM C1136 Type I, paintable white kraft paper outer surface reinforced with glass fiber yarn and bonded to aluminum foil, with self-sealing longitudinal lap and butt strips, breach puncture min. 50 oz-in/in tear per ASTM D781, tensile strength min. 30 lb/in per ASTM D828.

 2. FSK: Foil skim kraft per ASTM C1136 Type II.

G. Fiberglass insulation: Inorganic fibers bonded with thermosetting resin.

H. Approved Manufacturers: Owens Corning, Johns Manville, Knauf, Certain-Teed, Kflex, Armacell, Unifrax -Insulfrax, Industrial Insulation Group, Pittsburgh Corning. Where the term OAE is used herein, this refers to these manufacturers only. No other manufacturers are approved for this project.

2.2 PIPE INSULATION

A. General

 1. Valves, Fittings, and Accessories: Use the same insulation materials and thickness as the pipe insulation, except as noted.
B. Type P-1, Fiberglass Pipe Insulation: Factory assembled insulation and ASJ. Pre-formed fiberglass per ASTM C547 Type I, suitable for use on surfaces from 0–850°F, with thermal conductivity 0.23 at 75°F or 0.33 at 250°F, and minimum 3 pcf density. ASJ shall have self-sealing lap at end and along length, with pressure sensitive tape lap sealing system. Owens Corning SSL II Pipe Insulation, Johns Manville Micro-Lok, Knauf Pipe Insulation.

1. Where Type P-1 insulation is used, insulate fittings, valves and accessories using one of the following:
 a. Fiberglass pre-formed fitting insulation complying with the specification for P-1 pipe insulation, Johns Manville Hi-Lo Temp insulation inserts, Hamfab, OAE. Finish with Type J-2 fitting covers.
 b. Where pre-formed fitting insulation is not available, the following may be used: minimum 0.75 pcf density fiberglass per spec for D-1 insulation except without FSK. Finish with Type J-2 fitting covers or with two coats of fitting mastic with fiberglass fitting tape embedded between coats.

C. Type P-2, Fiberglass Pipe and Tank Insulation: Similar to Type P-1 insulation and jacket, except with fibers oriented to allow insulation to be wrapped onto curved surfaces, with conductivity 0.30 at 100°F, or 0.55 at 400°F. Johns Manville Pipe & Tank Insulation, Owens Corning Pipe and Tank Insulation or Knauf Pipe and Tank Insulation.

1. Alternate: Fiberglass board insulation similar to Type D2, scored for application on curved surfaces, with ASJ.

D. Type P-3, Calcium Silicate Pipe Insulation: Rigid calcium silicate per ASTM C533, Type 1, asbestos-free, suitable for use on piping up to 1200°F, conductivity 0.55 at 700°F, compressive strength min. 200 psi at 5% compression. Industrial Insulation Group OAE.

1. Fittings, valves and accessories: Insulate with mitered Type P-3 insulation or Type D-7 insulation.

E. Type P-4, Elastomeric Foam Pipe Insulation: Pre-formed elastomeric foam, ASTM C534 Type 1 flexible, closed cell, suitable for use up to 220°F, UV protected, not to exceed flame spread 25 and smoke developed 50 based on 0.75-inch thickness, conductivity 0.30 at 75°F. Kflex, Armacell OAE.

1. Fittings, valves and accessories: Insulate using either Type P-4 insulation pre-formed for use on fittings and valves, or cut sections of P-4 pipe insulation to match the shape of the fitting or valve, taped on using PVC tape.

2.3 DUCTWORK INSULATION

A. Type D-1, Fiberglass Blanket: Factory fabricated insulation and FSK jacket assembly suitable for applications from 40-250°F, 3/4 pcf fiberglass, ASTM C553 Type I or II, with thermal resistance not less than the following for 2-inch thickness: 6.8 out of the box, 5.6 installed with 25% compression. Johns Manville Microlite XG Duct Wrap, Owens Corning Soft R Duct Wrap, Knauf Friendly Feel Duct Wrap, Certainteed Soft Touch Duct Wrap.

B. Type D-2, Fiberglass Board: Similar to Type D-1 except rigid board type, 3 pcf density, thermal conductivity 0.23 at 75°F, NRC 1.36, suitable for unfaced side at up to 450°F and faced side at up to 150°F. Johns Manville 800 Series Spin Glas, Owens Corning 700 Series Board, Knauf Insulation Board, Certainteed Centra Pro Commercial Board
C. Type D-3, Acoustic Lining (roll type): Organic fiber or fiberglass duct liner bonded with thermosetting resin, with factory-applied acrylic surface coating treated with anti-microbial agent, and factory-applied or shop-applied edge coating.

1. Properties: Minimum 1.5 pcf density, thermal conductivity 0.24, 6000 FPM rated per UL 181, NRC 0.70 at 1-inch thick and .95 at 2-inch thick. The product (fiberglass, resin, coating, microbial agent and adhesive) as an assembly shall be suitable for surfaces and gases up to 250°F, and shall comply with ASTM C1071 (Type I), G21 and G22.

2. Lining surface shall be cleanable using commercially available duct cleaning equipment when performed by qualified technicians using procedures established and recommended by the North American Insulation Manufacturer’s Association (NAIMA) Duct Cleaning Guide.

D. Type D-4, Acoustic Lining (board type): Similar to Type D-3 and complying with all aspects of the spec for Type D-3 insulation, except 3 pcf density rigid board with NRC 0.75 at 1-inch thick and 1.0 at 2-inch thick. Johns Manville Permacote Linacoustic R-300. Owens Corning Duct Liner Board, Knauf Rigid Plenum Liner, Certainteed Rigid Liner Board.

E. Type D-5, Grease Duct Applications: High temperature, foil-encapsulated inorganic blanket, 8 pcf. Insulfrax Fyre Wrap Max 2.0, Johns Manville Fire Temp, OAE. Product shall meet the following when applied as 2-layers around a grease-duct:

1. Tested and listed for zero clearance to combustibles across the entire surface of the blanket material per internal fire test AC101 or ASTM E2336 - Internal Fire Test – 2 Hr Grease Duct Enclosures.

2. Rated as a 2-hr fire resistive enclosure assembly per ASTM E-119, Engulfment Fire Test for 2-hr Grease Duct Enclosure.

F. Type D-6 –Combustible Materials within Plenum: For use on combustible materials located within supply or return air plenums, foil-encapsulated 8 pcf high-temperature ceramic fiber blanket suitable for service up to 1800°F. Unifrax Fyre-Wrap 0.5 plenum insulation.

G. Type D-7 – Fire Rated Ductwork: Suitable for continuous operation at 1800°F, 6-pcf, foil-encapsulated inorganic blanket to provide a 2-hour rating per ISO 6944 when applied in a single 1.5-inch thick layer. Insulfrax FyreWrap 1.5 OAE.

H. Type D-8 – Polystyrene Insulation: Rigid cellular square edge insulation per ASTM C578, waterproof, thermal conductivity 0.20, compressive strength 25 psi. Dow Styrofoam or Owens Corning Foamular.

I. Type D-9 – Fiberglass Ductboard: Listed per UL 181 as a Class 1 Rigid Air Duct; conforming to ASHRAE Std. 62, NFPA-90A and 90B, ASTM G-21 & G-22; rated for 2-in. wg; constructed of fiberglass bonded with a thermosetting resin, with double density slip joints pre-molded in the board; FSK jacket; thermosetting acrylic polymer interior surface, and black interior surface color. Thermal conductivity 0.23, and NRC 0.70 at 1-inch thick and 1.0 at 2-inch thick. Johns Manville Superduct 475 or 800, Owens Corning Quiet R Duct Board, Knauf Duct Board M, Certainteed ToughGard Duct Board

2.4 EQUIPMENT INSULATION

A. E-1, Removable Insulating Blanket: Factory fabricated, one-piece, removable and re-usable insulating blanket with fiberglass insulation completely enclosed within a silicone coated fiberglass cloth with draw cords of SS or PTFE coated glass fiber, and stainless steel clips. Insulation thickness shall be as specified elsewhere, but not less than 1-inch. Energy Systems Inc. “Q-Master” OAE.
2.5 INSULATION JACKETS

A. Type J-1, Metal Jacket: 0.010-inch smooth Type 304 stainless steel or 0.016-inch smooth or embossed aluminum per ASTM B-209, with minimum 1-mil polyethylene film with protective layer of 40 Lb virgin kraft paper, continuously laminated to full width inside jacket. Childers OAE.

1. Where jacket diameter is 16–96 in: 0.016-in. SS or 0.020 in. aluminum.
2. Equipment heads and all surfaces where jacket is greater than 96-inch OD: 0.020-inch SS or 0.024 inch aluminum.
3. Fittings and Accessories: Provide the same jacket material as for pipe.

B. Type J-2, PVC Jacket: Minimum 20 mil sheets and 30-mil pre-molded fitting covers, ASTM D1784, Class 16354-C. Accessories include solvent weld solution, stainless steel tacks, and tape. All components shall be white, UV resistant, with paintable exterior surface, and suitable for use at –20 to +150°F. Johns Manville System 2000 (sheets), Zeston 300 (fitting covers), and Perma-Weld (solvent cement), OAE.

C. Type J-3, Canvas Jacket: 10 x 10 fiberglass mesh.

2.6 MISCELLANEOUS PRODUCTS

A. General:

1. Tapes: Aluminum, pressure sensitive, UL 181A-P listed and embossed, minimum 2.5-inch wide, Nashua 324A OAE.
2. Duct Liner Adhesives: Water-based, complying with ASTM C916.
3. Solvent Cement for PVC Jackets: Johns Manville Perma-Weld OAE.
4. Staples: Outward clinching, 0.5-inch galvanized steel

B. Piping Systems:

1. Pipe Hanger Insulation Inserts: Mechanical Pipe Shields Inc. “Snapp Itz” OAE.

C. Ductwork Systems:

2.7 SPECIAL APPLICATIONS

A. Handicap Lavatory Insulation Kit: Handi-Lav-Guard insulation kit per ANSI A117.1 with flexible vinyl finish.

PART 3 - EXECUTION

3.1 GENERAL

A. Delivery, Storage and Handling: Deliver and store insulation materials in factory-supplied containers. Protect from moisture. Do not install any materials that have gotten wet, regardless whether they are subsequently dried.

B. Store and apply materials in accordance with manufacturers’ recommendations, but not less than the following minimum temperatures. Ensure surfaces are clean and dry prior to application, and for
minimum two hours after application:
1. Sealers, coatings, solvents and adhesives: 40°F.
2. Tapes 50°F.

C. Install in accordance with manufacturer’s recommendations, NAIMA recommendations, and this spec.
Provide good ventilation.

D. Where vapor barriers are specified, ensure that the entire system is vapor sealed.

E. Protect materials from water damage. Replace any materials that are water-damaged prior to substantial completion.

3.2 PIPING INSULATION

A. General: Insulate piping as indicated herein and/or on the drawings. Except as noted, insulate all valves, fittings, and accessories with the same material and thickness specified for the pipe. Where piping is specified with a separate insulation jacket provide this same jacket for valves, fittings and accessories. Vapor seal cold piping systems.

1. Where insulation terminates, provide insulating cement beveled for a neat finish. For vaporsealed piping, coat with insulating mastic prior to applying insulating cement.
2. Strainers and Suction Diffusers: Either Type P-1 or P-3 insulation. Make provisions to easily remove and re-install insulation.
3. Pipe Supports: Provide high density calcium silicate insulation or insulation inserts as specified. Maintain pipe jacket and vapor barrier at supports. If necessary, apply a heavy coating of vapor barrier mastic material to prevent condensation from forming on supports. Provide galvanized steel insulation shields to protect insulation and jackets at supports.
4. Penetrations Through Building Construction: Insulation shall be continuous where piping passes through walls, floors, and other construction. Where insulated piping passes through fire and/or smoke rated construction, provide a section of UL approved fire safing insulation to match the required insulation thickness, or provide an insulated pipe sleeve as manufactured by Pipe Shield, Inc., OAE.
5. Mechanical Couplings: Where mechanical couplings are permitted, insulate them as specified for fittings.
6. Steam Traps: Do not insulate.
7. Retrofit Projects: Match the thickness of existing insulation where new insulation adjoins existing. Integrate new vapor barrier with existing so the insulation barrier is continuous for both new and existing piping.
8. All voids formed by support saddles or other mounting or support hardware shall be filled with insulation.

B. Application:

<table>
<thead>
<tr>
<th>Temp Range</th>
<th>Temp (F)</th>
<th>Insulation Type</th>
<th>Vapor Sealed</th>
<th>Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 1</td>
<td>1 - 1.5</td>
<td>Over 2 - 3</td>
<td>4 & 6</td>
</tr>
<tr>
<td>TR-1</td>
<td>60&Less</td>
<td>P-1 or P-4</td>
<td>Yes</td>
<td>1.5</td>
</tr>
<tr>
<td>TR-2</td>
<td>61 – 104</td>
<td>P-1</td>
<td>Yes</td>
<td>0.5</td>
</tr>
<tr>
<td>TR-3</td>
<td>105 - 140</td>
<td>P-1</td>
<td>No</td>
<td>1.0</td>
</tr>
<tr>
<td>TR-4</td>
<td>141 - 200</td>
<td>P-1</td>
<td>No</td>
<td>1.5</td>
</tr>
<tr>
<td>TR-5</td>
<td>201 - 250</td>
<td>P-1</td>
<td>No</td>
<td>1.5</td>
</tr>
<tr>
<td>TR-6</td>
<td>251 - 350</td>
<td>P-1</td>
<td>No</td>
<td>1.5</td>
</tr>
<tr>
<td>TR-7</td>
<td>Over 350</td>
<td>P-1</td>
<td>No</td>
<td>2.5</td>
</tr>
</tbody>
</table>
1. Temperature Range TR-1: Chilled water, refrigerant suction, condenser water (outdoor piping subject to freezing).
2. Temperature Range TR-2: Domestic cold water, makeup water, soft water, industrial water, process water of any type, non-potable water, HVAC make-up water (except insulation is not required for evap cooler makeup piping outdoors), interior horizontal roof drain and overflow bowls and piping, condensate drains indoors.
3. Temperature Range TR-3: Domestic hot water (including non-circulating HW within interior walls and chases) and domestic HW return except as noted.
4. Temperature Range TR-4: Heating water supply and return, low pressure steam condensate, pumped condensate return, engine cooling water.

C. Special Applications

1. Handicap Lavatories: Insulate domestic hot and cold water piping and P-traps exposed below handicapped lavatories with insulation kit specifically designed for the application.
3. Plastic pipe in return air plenums: Provide 0.5-inch type D6 insulation.
4. Piping subject to freezing and heat traced piping: Insulate all such piping (including drain piping) with thicknesses specified, but not less than 1.5-inch thickness. Oversize insulation to accommodate heat tracing where indicated. Provide J1 jacket.

D. Type P-1 & P-2, Fiberglass Insulation: Install in accordance with manufacturer’s recommendations.

E. Type P-3, Calcium Silicate Insulation: Adhere to pipe or equipment using stainless steel wire. Provide removable J-1 jacket.

F. Type P-4, Elastomeric Foam: Seal all butt ends and longitudinal joints with Halstead Adhesive. When exposed to the weather, protect flexible tubing insulation with two coats of exterior weatherproof coating as recommended by manufacturer.

G. Jacketing: In addition to the finish and jacket specified for the particular type of insulation, provide the following:

1. Indoor piping exposed to physical damage Type J-2, PVC
2. Mechanical Eqpt Spaces: Exposed piping less than 8 ft above floor or operator platform Type J-2, PVC
3. Exterior piping Type J-1, Metal
4. Tunnels Type J-2, PVC

3.3 DUCTWORK INSULATION

A. General:

1. Insulate all ducts except those specified to be uninsulated. The following ductwork need not be field insulated:

 a. Ducts with acoustic lining, provided the lining thickness matches or exceeds the required insulation thickness.

 2. See Table 23 0700-1 for additional information.
3. Ensure that ductwork is leakage tested prior to applying insulation. Inspect ductwork and repair any deficiencies prior to applying insulation. Do not apply insulation over deficient ductwork or plenum construction.

4. Ensure that ductwork is clean and dry before applying insulation.

5. For ductwork with acoustic lining the drawings indicate the "clear inside duct dimension" required. Over-size ducts as required to provide the required air flow area.

B. Type D-1, Fiberglass Blanket Insulation: Measure and cut insulation. Install so insulation is not excessively compressed at corners. For rectangular and flat oval ducts 24-inches and wider, provide stick pins and speed clip washers 18-inches on centers on the bottom, and clip off excess length of stick. Firmly butt insulation ends and longitudinal joints. Overlap jacket minimum 2-inches at end joints and longitudinal joints, staple on 6-inch centers, and continuously seal jacket. Provide vapor barrier mastic where ducts are indicated to be vaporsealed. Should gaps or fishmouths occur, re-staple and seal them with mastic. Use FSK tape and vapor barrier mastic to seal all penetrations of the FSK jacket, such as pins, tears, and hangers. Neatly trim and seal insulation at access doors, ends, damper rod controls etc. Verify proper damper operation.

C. Type D-2, Fiberglass Board Insulation: Attach with mechanical fasteners 12" on centers.

D. Type D-3 & D4, Acoustic Lining: Ductwork dimensions indicated on the drawings are net air flow dimensions inside liner. Increase duct size to accommodate liner. Completely line the inside surfaces of ducts and plenums specified and indicted. Comply with the NAIMA Fibrous Glass Duct Liner Standard (FGDLS), manufacturer’s recommendations, and this spec. Adhere liner with minimum 90% coverage of adhesive, and secure with mechanical fasteners and washers per FGDLS and manufacturer’s recommendations. Fastener length shall be sufficient to limit compression of liner to 1/8" maximum. Coat all cut edges and surface penetrations with edge sealer. Provide metal nosing for liner leading edges at fan discharge and for all ducts with air velocities exceeding 3,000 FPM. Maintain minimum 18-inch clearance from electric resistance heaters. Interrupt liner at dampers and apply external insulation at these locations.

1. Provide Type D-3 insulation for the 10 feet upstream of roof exhaust fans except in wet air streams.

E. Type D-5: Install insulation in a 2-layer system per manufacturer’s instructions, including the use of mechanical fasteners for the underside of ducts, butting or overlapping of joints, and offsetting of joints on outer layer.

F. Type D-6: Install in accordance with manufacturer’s instructions. Overlap seams and joints minimum 2-inches, affix with SS wire minimum 18-inches on centers, but not less than per manufacturer’s recommendations, and tape seams and joints with aluminum tape.

G. Type D-7: Install insulation in a single-layer system per manufacturer’s instructions. Mechanical fasteners for the underside of ducts shall be adhered to the duct in a manner suitable for the operating temperatures (welded or other suitable method). Butt or overlap joints per manufacturer’s recommendations.

H. Type D-8: Wire in place with SS wire minimum 12-inches on centers, and provide J-1 jacket.

I. Type D-9: Install per manufacturer’s recommendations, NAIMA standards, and SMACNA Fibrous Glass Duct Construction Standards. Provide ship lap seams and joints.

3.4 EQUIPMENT INSULATION
A. General: Where specified elsewhere, equipment will be factory insulated. Insulate all equipment as noted herein except portions of equipment that are factory insulated.

1. Fiberglass Board Insulation: Score, bevel, or miter to provide tight joints and secure in place with mechanical pin and clip fasteners and insulation bonding adhesive applied to underside surfaces, or with bands. Fill joints with insulation material and provide corner beads to protect edges of insulation.
2. Cold Tanks and Equipment: J3 jacket with two coats of approved vapor barrier mastic.
3. Factory Packaged Equipment: Field insulate the equipment and piping on factory-fabricated assemblies as if they were field installed, unless such items are factory insulated.

3.5 JACKETING

A. Type J-1, Metal Jacketing:

1. Ducts: Slope jacketing to shed rain.
2. Pipes: Install with seams at the 3 o'clock or 9 o'clock position to shed water. Band 12" on centers.

B. Type J-2, PVC Jacketing: Secure in place with tacks and solvent welded joints. White PVC tape may be used indoors.

C. Type J-3, Canvas Jacket: Apply mastic at a rate of 60 to 70 sq. ft. per gallon, embed fiberglass mesh, smooth all wrinkles and apply finish coat of Sealfas, or equivalent.

END OF SECTION
TABLE 23 0700-1 – DUCTWORK INSULATION

<table>
<thead>
<tr>
<th>Service</th>
<th>Location</th>
<th>Condition</th>
<th>Insulation Type</th>
<th>Insulation Thickness (in)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Air, Makeup Air, Outside Air</td>
<td>Indoor</td>
<td>Concealed</td>
<td>D1</td>
<td>1.5</td>
<td>1, 6</td>
</tr>
<tr>
<td>Supply Air, Makeup Air, Outside Air</td>
<td>Indoor</td>
<td>Exposed</td>
<td>D2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Supply Air, Makeup Air, Return Air</td>
<td>Outdoor</td>
<td>All</td>
<td>D8</td>
<td>2</td>
<td>2, 4, 7</td>
</tr>
<tr>
<td>Supply Rectangular Ductwork downstream of</td>
<td>Indoor</td>
<td>All</td>
<td>D3</td>
<td>1.5</td>
<td>1, 3</td>
</tr>
<tr>
<td>Terminal Units, Fan Coil Units, Heat Pumps,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blower Coils and Low Velocity AHU's</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Rectangular Ductwork upstream of Fan</td>
<td>All</td>
<td>All</td>
<td>D3</td>
<td>1.5</td>
<td>1, 3</td>
</tr>
<tr>
<td>Coil Units, Heat Pumps, Blower Coils and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Velocity AHU's</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ductwork indicated to be lined</td>
<td>All</td>
<td>All</td>
<td>D3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Ductwork indicated to be lined with 2-inch</td>
<td>All</td>
<td>All</td>
<td>D3 or D4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>acoustic lining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Wall Lined Plenums</td>
<td>All</td>
<td>All</td>
<td>D4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Transfer Air Ducts</td>
<td>All</td>
<td>All</td>
<td>D3 or D9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Exhaust Ductwork</td>
<td>Indoor</td>
<td>Concealed</td>
<td>D1</td>
<td>1.5</td>
<td>8</td>
</tr>
<tr>
<td>Exhaust Ductwork</td>
<td>Indoor</td>
<td>Exposed</td>
<td>D2</td>
<td>1.5</td>
<td>8</td>
</tr>
<tr>
<td>Kitchen Exhaust Ductwork</td>
<td>Indoor</td>
<td>All</td>
<td>D5</td>
<td>2-layers</td>
<td></td>
</tr>
<tr>
<td>Plastic Piping and Ductwork within RA Plenums</td>
<td>Indoor</td>
<td>Concealed</td>
<td>D6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Fire-Rated Ductwork Other than Kitchen Exh</td>
<td>Indoor</td>
<td>All</td>
<td>D7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Boiler Breeching & Stack</td>
<td>Indoor</td>
<td>All</td>
<td>P1 or P2</td>
<td>3</td>
<td>4, 7</td>
</tr>
<tr>
<td>Boiler Breeching & Stack</td>
<td>Outdoor</td>
<td>Exposed</td>
<td>P1 or P2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Includes Supply Air Duct from Energy Recovery Units and Evaporative Coolers.
2. Provide acoustical liner as indicated on the drawings.
3. Delete Type D1 insulation if acoustical liner is indicated by plan notes or shown on the drawings.
4. Provide J1 Jacket.
5. In hospitals do not provide acoustical lining in supply ductwork or plenums downstream of the final filter.
6. Vaporseal ducts conveying cold air.
7. Seal outdoor ductwork to prevent ingress of moisture.
8. Insulate only the portion of exhaust ductwork between isolation damper and outside.
SECTION 23 0900 AUTOMATIC TEMPERATURE CONTROLS

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform with applicable provisions of the General Conditions, Special Conditions and the General Requirements.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.

B. Section 23 0505, Piping Specialties.

C. Section 23 0523, Valves.

D. Section 23 0549, HVAC and Electrical Installation Coordination.

E. Section 23 0593, Testing, Adjusting and Balancing.

1.3 SCOPE

A. It is the intent of this section to provide a fully functional system to provide fully automatic temperature control for all systems provided under this contract.

B. It is the responsibility of the bidder to read and conform to all sections of the specifications, review all contract drawings and to coordinate all equipment supplied under other sections of the specifications with this work.

C. The control system shall include all operator input/output devices, field control units, field controls, sensors and controls conduit, wiring, and piping, etc.

D. The engineering, installation supervision and labor, calibration, and checkout necessary for a complete and fully operational control system as specified hereafter shall be provided under this section.

E. The controls contractor shall be responsible for installation of factory furnished and field installed controls as well as all other system controls indicated on the contract drawings or
required by this specification.

1.4 PRIOR APPROVAL

A. The controls contractor must be engaged in the business of installation and service of controls systems on a regular basis and must have at least five years experience. Mechanical or electrical sub-contractors will not be accepted as the controls system installer. The controls system installer shall employ full time factory trained and qualified service staff to support and maintain the controls system.

1.5 SUBMITTALS

A. Submittals shall be provided as required by 23 0500 and the General Contract Requirements. Submittals shall consist of shop drawings and catalog data sheets. Shop drawings shall show all controlled devices, electrical ladder diagrams, system schematics, sequence of operation, and material lists.

B. Within 30 days of contract award, submit eight sets of shop drawing and submittal data. These submittals shall be provided to the Mechanical and Electrical sub-contractors for coordination review and evaluation prior to being submitted to the Owner’s authorized representative. Letters from these sub-contractors verifying that they have reviewed the submittals and including any comments must be attached with submittals when submitted to Owner's authorized representative. Submittals received without such reviews will be returned without action.

1.6 SHOP DRAWINGS

A. Shop drawings shall be provided which show all controlled systems and control devices. Connections between all components shall be clearly indicated. Control contractor shall coordinate with other suppliers prior to submitting so that final connections to all equipment can be shown. Simply showing a connection with no identification or termination will be considered unacceptable. All connections shall be labeled on both ends and these same labels shall be used for the installation process. Each device shall also be given a unique identifier. This identifier shall be used in the sequence of operation so that reference to the drawings can be easily made.

B. Electrical Ladder Diagrams shall be provided on the shop drawings which show the correct control wiring and interlock wiring of all equipment provided by Division 23 and other equipment required including air handling units, boilers, chillers, etc. including owner furnished equipment and equipment under other sections of this specification. Diagrams shall show all switches, relays, motor starters, etc. Each diagram shall reference the correct power source, whether from a specific circuit or from a control transformer. If equipment shown is provided by another contractor, then this shall be noted. Any relevant set points, such as time
delay relay settings, shall be shown.

C. The sequence of operation for each controlled system shall be provided with reference to the control device identifier. The sequence of operation shall break down the control operation by major function (i.e., mixed air control, occupied-unoccupied, smoke purge, etc.) and describe in detail the correct operation and interaction with other system functions.

D. A complete material listing shall be included on the shop drawings which show the device model number, device identifier, quantity, manufacturer, etc., of all equipment provided by this contractor. The material list shall be organized in alphabetical order so that it can be easily compared to the associated catalog data sheet. The quantities are to be provided only to confirm a general understanding of the contract requirements and will not be verified as a complete material list.

1.7 CATALOG DATA SHEETS

A. A manufacturer’s catalog data sheet will be provided for each piece of equipment provided by this contractor. At a minimum, the data sheet shall contain sufficient information so that compliance with the specification can be verified. The catalog data sheets shall be organized in alphabetical order to match the material listing on the shop drawings.

1.8 RECORD DRAWINGS

A. Record drawings shall be provided as required by 23 0500 and the General Contract Requirements. Record drawings shall not be completed until after installation is complete. Any changes made during installation shall be recorded on the submittal drawings so that a current record drawing is constantly being updated. At completion of the project, all changes shall be incorporated into a clean record drawing version. These record drawings shall be detailed enough to thoroughly trouble-shoot the entire system.

B. With the reproducible record drawings the Contractor shall furnish a complete spare parts lists, operating instructions, and maintenance literature, for proper maintenance of all control equipment, in accordance with the requirement specified in Section 23 0500.

C. The following manuals or combination manuals will be provided 2 sets:

1. An operator's manual which will include detailed instructions for all operations associated with the Automatic Temperature Controls System.

1.9 TEST AND INSTRUCTION

A. The controls contractor shall prepare a written plan indicating in a step-by-step manner, the procedures that will be followed to test, checkout and adjust the control system prior to and
during functional performance testing. At minimum, the plan shall include for each type of equipment controlled by the automatic controls:

1. System name.
2. List of devices.
3. Step-by-step procedures for testing each controller after installation, including:
 a. Process of verifying proper hardware and wiring installation.
 b. Process of performing operational checks of each controlled component.
 c. Plan and process for calibrating valve and damper actuators and all sensors.
 d. A description of the expected field adjustments for transmitters, controllers and control actuators should control responses fall outside of expected values.

4. A copy of the log and field checkout sheets that will document the process. This log must include a place for initial and final read values during calibration of each point and clearly indicate when a sensor or controller has “passed” and is operating within the contract parameters.

5. A description of the instrumentation required for testing.

6. Indicate what tests on what systems should be completed prior to Testing, Adjusting and Balancing (TAB) using the control system for TAB work. Coordinate with the Owner and TAB contractor for this determination.

B. Upon completion of the checkout of each controlled device, equipment and system prior to functional testing for each piece of equipment or system, provide a signed and dated certification to the Owner and GC that all system programming is complete as to all respects of the Contract Documents, except functional testing requirements.

C. List and clearly identify on the as-built duct and piping drawings the locations of all static and differential pressure sensors (air and water pressure).

D. At the termination of the testing period, the Contractor shall provide completed point verification sheets for each point in the FMS. These sheets shall be included as a part of the closeout notebook. An example of a point verification form is included in the appendix.

E. The Owner reserves the right to participate in or assign a representative to participate in the startup, testing, programming, or any other aspect of the construction of this project at no additional cost to the Owner.

1.10 TRAINING

A. Upon completion of the work and acceptance by the Owner, factory representatives under employment of the ATC supplier shall provide 8 hours total of on site instruction to the Owner's operating personnel who have responsibility for the mechanical system.
1.11 SERVICE AND WARRANTY

A. The system supplier shall maintain a local maintenance support facility complete with system technicians, diagnostic and test equipment, and new spare components. Emergency service shall be available in the local office on a 24-hour, 7-day a week basis. The service agent shall provide a continuously monitored local service telephone number for emergency service and this number shall be provided to the Owner.

B. Warranty all work as follows:

1. Labor & materials for control system specified shall be warranted free from defects for a period of twelve (12) months after final completion acceptance by the Owner. Control System failures during the warranty period shall be adjusted, repaired, or replaced at no charge or reduction in service to the Owner. Service during this period shall be available within 12-hours from the time the trouble call is placed.

2. At the end of the final start-up/testing, if equipment and systems are operating satisfactorily to the Owner and Engineer, the Owner shall sign certificates certifying that the control system's operation has been tested and accepted in accordance with the terms of this specification. The date of Owner's acceptance shall be the start of warranty.

C. Service and maintenance must be provided for one year minimum from time of owner acceptance of the pneumatic system with 12-hour response time. Warranty shall be for full system component parts and labor.

1.12 PROGRESS PAYMENTS

A. When developing a schedule of values for the FMS and control systems, a minimum of 20% shall be reserved for activities after construction completion, including commissioning support, testing (functional performance testing and trend logs as required herein), record drawings, training, etc. Payment for these activities may be requested as they are completed.

PART 2 - PRODUCTS

2.1 GENERAL

A. All products required for this project not provided with the factory controls systems shall be selected in accordance with this Part of the Section. Installation of the components shall be in accordance with Part 3 of the Section. If a component is required to meet the requirements shown on the drawings and is not specified in the Part of the specification, the Supplier shall select and submit on components that meets all design requirements indicated on the Drawings, stated in the sequence of operation, and elsewhere in the Contract documents.
2.2 ROOM THERMOSTAT AND OCCUPANT CONTROLS

A. Electronic Programmable Thermostat (Multi-Stage): Electronic programmable thermostats shall be fully configurable single piece commercial design with sub-bases provided for required application. Supply voltage shall be 20-30 VAL with a maximum power consumption of 6 VA. Output relays for fan, heat, cool, and economizer shall all be rated for 1.6 amps running and 3.5 amps in rush. Programmable temperature range shall be 45°F to 95°F and schedules shall be programmable to ten minutes. Shall be capable of two occupied and two unoccupied intervals per day. Control shall be from a proportional-integral loop with intelligent fan and recovery control. Occupancy override button shall be located on the thermostat to allow for two hour override of the occupied mode.

B. Electronic Thermostats: All space thermostats shall be self contained fully proportional solid state units operating on a maximum voltage of 24 VAC or 24 VDC. The thermostats shall have one exposed and adjustable setpoint adjustment with a range of 55°F to 85°F. A compatible proportional output shall be to drive the associated actuator. Where sequenced proportional and digital devices are indicated, solid state staging relays shall be provided to operate the digital equipment at an adjustable pick-up point on the proportional output signal. The thermostat cover shall be constructed of beige plastic and shall operate in an environment of 40°F to 135°F and 5 to 95% relative humidity. The thermostat shall be rated at NEMA I.

C. Line Voltage Thermostat: The thermostat shall be of the bimetallic design with a SPDT set of contacts rated for 120 VAC at 25 amps. Thermostat shall have an adjustable set point of from 50 deg F to 86 deg F with a fixed differential of 2.0 deg F.

2.3 CONTROL RELAYS

A. Control relay contacts shall be rated for 150% of the loading application, with self-wiping, snap-acting Form C contacts, enclosed in dustproof enclosure. Relays shall have silver cadmium contacts with a minimum life span rating of one million operations. Relays shall be equipped with coil transient suppression devices.

2.4 SMOKE AND FIRE DETECTORS

A. Smoke detectors shall be supplied, powered, installed, and interlocked in accordance with Section 23 0549. The smoke detectors shall be listed by Underwriters' Laboratories, Inc. The units shall be designed for detection of combustion gases, fire and smoke in air conditioning and ventilation system ducts, in compliance with the National Fire Protection Association, Recommended Practices Pamphlet No. 90A. It shall consist of an ionization type detector with self-contained control unit. The assembly shall consist of a casting to accommodate metallic sampling tubes which extend across the duct of the ventilation system.
B. The unit shall provide two (2) sets of normally open single pole, double throw alarm operated relay contacts (5A, 120V, AC).

C. The unit shall be bolted directly to the duct or plenum wall. A template shall be provided for making necessary cutouts and holes. Complete instructions shall be provided with units.

D. Unit shall be capable of stable operation from 0 deg to 150 deg F.

E. Sampling tubes shall be EMT tubing, 1/2-inch in diameter, length and support as required to extend across plenum or duct. Quantity and location of sampling tubes shall be as required for representative sampling. Plastic tubes will not be allowed.

2.5 WIRING

A. Provide interlock wiring between supply and exhaust fans, electrical wiring for relays (including power feed) for temperature and pressure indication. Provide interlock wiring between refrigeration machines, pumps and condensing equipment as required for the specified sequence of operation and the refrigeration system integral controller(s). Provide interlock wiring between boilers and pumps as required for the specified sequence of operation and the hot water system integral controller(s).

B. Provide power wiring, conduit and connections for low temperature thermostats, high temperature thermostats, alarms, flow switches, actuating devices for temperature, humidity, pressure and flow indication, point resets and user disconnect switches for electric heating, appliances controlled by the factory controls and field installed.

C. Provide all other wiring required for the complete operation of the specified systems including control power wiring not expressly stated to be provided by Division 26.

D. Install all wiring raceway systems complying with the requirements of the National Electrical Code and Division 26. All installations shall be installed in EMT.
E. Power and Communication Wiring Transient Protection

1. The control manufacturers shall submit catalog data sheets providing evidence that all FMS products offered by the manufacturer are tested and comply with the standard for Transient Surge withstand capabilities for electrical devices ANSI C62.41, IEEE-587-1980, Categories A and B. Such testing shall have included power and communication trunk wiring. Compliance with IEEE-587 shall imply conformance with IEEE-472 transient standards based on the stated position of ANSI and IEEE regarding applicability of the rated standards.

2. Communications trunk wiring shall be protected with a transient surge protection device providing the minimal protection specifications of the General Semiconductor, Model #422E device.

3. The communications circuitry, input/output circuitry, and CUs, shall provide protection against a 1000 volt, 3 amp transient signal, directly applied to the communication or input/output terminations. The manufacturer’s catalog data sheet shall provide evidence of conformance with this requirement. Systems not complying with this requirement shall provide equivalent protection external to the FMS controller. Protection shall be provided for the individual communications and input/output terminations for each FMS controller. Submittal documentation shall clearly define how this requirement will be met and how the external protection will not affect the performance of the controllers.

F. Input/Output Control Wiring

1. RTD wiring shall be three-wire or four-wire twisted, shielded, minimum number 22 gage.

2. Other analog inputs shall be a minimum of number 22 gage, twisted, shielded.

3. Binary control function wiring shall be a minimum of number 18 gage.

4. Analog output control functions shall be a minimum of number 22 gage, twisted, shielded.

5. Binary input wiring shall be a minimum of number 22 gage.

6. Thermistors shall be equipped with the manufacturer’s calibrated lead wiring.

7. 120V control wiring shall be #14 THHN in 3/4" conduit. Provide 4 or 20 percent fill extra wire in each conduit.

G. Splices

1. Splices in shielded cables shall consist of terminations and the use of shielded cable couplers which maintain the integrity of the shielding. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties as specified herein.

H. Conduit and Fittings

1. Conduit for Control Wiring, Control Cable and Transmission Cable: Electrical metallic
tubing (EMT) with compression fittings, cold rolled steel, zinc coated or zinc-coated rigid steel with threaded connections.

2. Outlet Boxes (Dry Location): Sheradized or galvanized drawn steel suited to each application, in general, four inches square or octagon with suitable raised cover.

3. Outlet Boxes (Exposed to Weather): Threaded hub cast aluminum or iron boxes with gasket device plate.

4. Pull and Junction Boxes: Size according to number, size, and position of entering raceway as required by National Electrical Codes. Enclosure type shall be suited to location.

2.6 CONTROL TRANSFORMERS

A. Control transformers shall be provided where shown or where required to meet the sequence of operation. Control transformers shall be fused on both primary and secondary taps. Fusing shall not exceed 80 percent of the rated transformer output. Control transformers 100 VA and less may have internal secondary overload if desired but anything over 100 VA must be external fused. Control transformers over 100 VA supplying power to a control panel shall be located external to the control panel.

2.7 EQUIPMENT CONNECTIONS

A. Not Applicable.

2.8 HVAC SYSTEM TIMECLOCK

A. Timeclocks shall be 365-day astronomic type with the following features:

1. Automatic input voltage selection from 120 to 277 VAC, 50/60 Hz.
2. NEMA 1 Metal Enclosure
3. Over 2,000 events plus holiday schedules.
4. Advanced scheduling including relative dating, such as fourth.
5. 30 A rated contacts.
6. 100-hour supercapacitor eliminates the need for batteries.
7. USB connection for uploading, downloading and transferring programs.
8. Easy-to-follow on-screen menus for programming to-the-minute accuracy
9. Non-volatile memory protects programming indefinitely
10. Firmware upgradable in-field via USB or Ethernet
11. Internally expandable, in 4-circuit increments, up to 16-circuits for 4, 8, and 12-circuit models
12. PC App for easy scheduling or control, either remotely or through USB flash drive

B. Timeclocks shall be Intermatic Model ET90215C or equivalent.
PART 3 - EXECUTION

3.1 GENERAL

A. All devices, conduit, wiring, etc., shall be installed in a neat professional manner by skilled persons.

1. The installation of all aspects of the system shall comply with all applicable codes and regulations and with Division 26 Specifications.
2. The installation of all materials shall be in accordance with the published manufacturer’s recommendations without exception. If for some reason a particular component cannot be installed in compliance with these recommendations, the Contractor shall advise the Engineer of the situation.
3. Where miscellaneous materials are required to complete an installation, i.e., isolation valves for pressure switches, wall switches for an exhaust fan control circuit, etc.; the materials shall be supplied as defined in the relevant Section of these Specifications. For example, Section 23 0523 specifies valve requirements, and Division 26 specifies electrical products and requirements.
4. Coordinate with other trades where installation of a particular component requires other trades to be involved. Installation coordination includes location the correct placement of thermowells, flow switches, dampers, control valves, control power circuits, etc. Care must be exercised to identify locations that meet the requirements of the manufacturer including upstream and downstream distances, pressures, temperatures, etc.

3.2 ROOM THERMOSTAT AND OCCUPANT CONTROLS

A. Thermostats shall be installed 44” A.F.F. to the center of the thermostat unless otherwise noted on the architectural drawings or specifications.

B. Provide locking thermostat cover for thermostats located in common areas and hallways.

3.3 CONTROL RELAYS

A. Control relays shall be field or panel mounted as indicated on the Drawings. If a relay is field mounted it will be installed in a NEMA I housing.

B. Control relays shall be installed in bases and the based mounted on a DIN rail. All accessories including end clips, jumpers, etc., shall be provided. All wiring shall be labeled. Multiple conductors shall be bundled and run by classification in plastic wireways. Relays shall be labeled as indicated in the shop drawings for ease in troubleshooting.

3.4 SMOKE AND FIRE DETECTORS
A. Smoke detectors and the associated wiring shall be installed in accordance with Section 23 0549.

3.5 ELECTRICAL CONTROL POWER AND LOW VOLTAGE WIRING

A. Comply with all Division 26 installation requirements.

B. Install low voltage power in conduit in the following locations regardless of local building code allowances otherwise.

1. Mechanical rooms.
2. Electrical rooms.
3. Vertical risers. (Exception: fire rated continuous closet like a telephone closet.)
4. Open areas where the wiring will be exposed to view or tampering.
5. Hard ceilings and walls.

C. Conceal conduit within finished shafts, ceilings and wall as required. Install exposed conduit parallel with or at right angles to the building walls.

D. Do not install Class 2 wiring in conduit containing Class 1 wiring. Boxes and panels containing high voltage may not be used for low voltage wiring except for the purpose of interfacing the two (e.g., relays and transformers).

E. All wire-to-device connections shall be made at terminal blocks or terminal strip. All wire-to-wire connections shall be at a terminal block, or with a crimped connector. All wiring within enclosures shall be neatly bundled and anchored to permit access and prevent restriction to devices and terminals.

F. Plug or cap all unused conduit openings and stubups. Do not use caulking compound.

G. Route all conduit to clear beams, plates, footings and structure members. Do not route conduit through column footings or grade beams.

H. Set conduits as follows:

1. Expanding silicone firestop material sealed watertight where conduit is run between floors and through walls of fireproof shaft.
2. Oakum and lead, sealed watertight penetration through outside foundation walls.

I. Cap open ends of conduits until conductors are installed.

J. Where conduit is attached to vibrating or rotating equipment, flexible metal conduit with a
minimum length of 18” and maximum length of 36” shall be installed and anchored in such a manner that vibration and equipment noise will not be transmitted to the rigid conduit.

K. Where exposed to the elements or in damp or wet locations, waterproof flexible conduit shall be installed. Installation shall be as specified for flexible metal conduit.

L. Provide floor, wall, and ceiling plates for all conduits passing through walls, floors or ceilings. Use prime coated cast iron, split-ring type plates, except with polished chrome-plated finish in exposed finished spaces.

3.6 CONTROL TRANSFORMERS

A. Control transformers shall be field mounted using a plate to mount on the associated junction box or panel using a foot-style mounting. Locations shall be as identified on the Drawings or as determined by field requirements. A phenolic label on each transformer shall identify the power source by breaker panel and circuit. Fusing of the primary and secondary sides and sizing shall be as defined by the NEC. Provide means of local disconnect for transformer to allow removal.

3.7 EQUIPMENT CONNECTIONS

A. Class II field wiring for all non-control device applications shall be installed under this Section of the Specification. This includes equipment such as VFDs, chillers, boilers, packaged air handling equipment, etc.

3.8 HVAC SYSTEM TIMECLOCK

A. Locate timeclock inside the building shown on the drawings or coordinate with the owner. Wire timeclock to associated mechanical equipment as outlined on the drawings.

B. Program the timeclock based on the occupancy schedule for the building as coordinate with the building owner.

END SECTION 23 0900
APPENDIX

Typical Point Verification Form

<table>
<thead>
<tr>
<th>POINT VERIFICATION FOR AHU-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Description</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>SA Temp Sensor</td>
</tr>
<tr>
<td>SA Static Press</td>
</tr>
<tr>
<td>Fan S/S</td>
</tr>
<tr>
<td>Fan Status</td>
</tr>
<tr>
<td>FreezeStat<sup>(3)</sup></td>
</tr>
<tr>
<td>CW valve control</td>
</tr>
</tbody>
</table>

⁽¹⁾ RTC is Robert T. Conbert of Acme Control Company, Inc.

⁽²⁾ ALM is Albert L. Mackey, P.E. of Zebra Commissioning Company, Inc.

⁽³⁾ FreezeStat is also hard wired to stop fan in the hand or auto position. These interlocks were tested on the same day.
SECTION 232313 - REFRIGERANT PIPING SYSTEM AND EQUIPMENT

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Conform to the applicable provisions of the General Conditions, the Supplemental General Conditions and the General Requirements.

1.2 RELATED SECTIONS

A. Section 23 0500, Common Work Requirements for HVAC.
B. Section 23 0504, Pipe and Pipe Fittings.
C. Section 23 0505, Piping Specialties.
D. Section 23 0523, Valves.
E. Section 23 0700, HVAC Insulation.
F. Section 23 0900, Automatic Temperature Controls for temperature control valves, meters and instrumentation.
G. Division 26, Electrical.
H. Refrigerant piping, insulation, and accessories associated with medical equipment and kitchen equipment furnished under other sections of this specification shall be furnished and installed by the

1.3 QUALIFICATION PROCEDURES

A. The storage, handling, and transportation of all refrigerants, oils, lubricants, etc. shall be accomplished in strict compliance with all State, local, and Federal Regulations including all requirements set forth by the Environmental Protection Agency (EPA) for the safe handling of regulated refrigerants and materials. The Contractor shall utilize qualified and/or certified personnel and equipment as prescribed by these requirements. In no situation shall any refrigerant be discharged to the atmosphere. All refrigerants recovered from all systems shall be disposed of in compliance with these same regulations.

PART 2 - PRODUCTS

2.1 AIR COOLED CONDENSER

A. Furnish and install air cooled condensers located on building roof as shown on the drawings. Air cooled condenser shall be of type and capacity as specified in the Mechanical Equipment Schedule on the drawings.

2.2 PIPING

A. Refrigerant piping materials and installation shall be in accordance with the best working and piping practices for Freon refrigerants. The Contractor shall install the refrigerant piping using Type "L" hard drawn copper tubing, Federal Specification WW-T-749, with silver solder joint. All piping shall be installed in a straight manner, free from traps, and shall be provided with plugged or capped ends, as it
is erected, to prevent dirt from entering. The piping system shall be provided with gauges as required for the operation of the system. The piping is shown schematically on the drawings, verify exact arrangement and pipe sizing with equipment manufacturer.

2.3 VALVES

A. Expansion valves shall be of the thermostatic type as manufactured by Alco, Sporlan, or equivalent, and shall be gas charged with capillary tube, external superheat adjustment and external equalizing connection. The expansion valves at each apparatus shall be protected by a strainer in the refrigerant liquid line to that group. The strainer shall be as manufactured by the Henry Valve Company, or equivalent, not less than line size and provided with shut-off valves before and after, and furnished with the packaged reciprocating unit.

B. Solenoid valves shall be suitable for the system in which they are used and shall be designed specifically for use with Freon refrigerants. Solenoid valves shall be furnished with the packaged reciprocating unit.

C. Refrigerant line valves shall be packless type or packed type with gas tight cap seal with wheel, globe, angle, or "T" needle type, with hard metal seats and shoulders on stems to permit packing stuffing boxes while open under pressure, or sealed diaphragm type.

2.4 DRYER

A. In each liquid line, install a suitable silica gel filter and dryer. Dryer shall be furnished with the chiller.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Piping installation shall conform to the requirements of Section 23 0500, Common Requirements for HVAC, and Section 23 0504, Pipe and Pipe Fittings.

3.2 TESTING OF REFRIGERANT PIPING SYSTEM

A. After the installation of the refrigerant piping system has been completed, all piping shall be tested and proven tight for a period of twenty four (24) hours at a pressure of 550 lbs. per square inch using dry nitrogen.

3.3 EVACUATION AND CHARGING

A. Upon completion of the piping pressure test, the refrigerant circuit shall be evacuated to 500 microns using a closed tube manometer and a high vacuum pump (using an electronic vacuum gauge that reads in microns) to ensure tightness of the piping and to remove air and moisture from the piping system. Upon completion of evacuation and acceptance of the system tightness, the vacuum shall be broken by the introduction of the refrigerant.

3.4 REFRIGERANT AND LUBRICATING OIL

A. Contractor shall furnish and install all of the refrigerant required to develop the system to its full rating, and in addition to the initial charge, the Contractor shall be required to provide all refrigerant required for the proper operation of the refrigeration apparatus during the first season's operation. Contractor shall guarantee that the loss of refrigerant for a season's operation shall not exceed 10% of the full charge of the system and he shall furnish any refrigerant required above this amount. This guarantee
shall remain in effect until such time as the Contractor shall demonstrate this performance for one full year's operation. The Contractor shall be required to provide the initial charge of lubricating oil for all refrigeration apparatus and related equipment, and shall furnish a chart listing the type of oil and a schedule for maintenance that should be used with the various equipment.

3.5 PRESSURE RELIEF DEVICES

A. Refrigerant pressure relief devices and fusible plugs shall be installed with piping to a safe location in accordance with ANSI/ASHRAE Standard 15-1994. Discharge shall be to atmosphere at a location not less than 15 feet above the adjoining ground level and not less than 20 feet from any window, ventilation opening, or exit from any building. Discharge line sizing shall conform to ANSI/ASHRAE Standard 15-1994.

B. Each discharge pipe shall be equipped with a drip leg capable of holding 1 gallon of liquid. The drip leg shall include a manual drain valve.

END OF SECTION
SECTION 233000 - AIR TEMPERING SYSTEM AND EQUIPMENT

PART 1 - GENERAL

1.1 REQUIREMENTS

A. Provide all products, labor and services necessary to construct and demonstrate proper functionality of the HVAC and exhaust systems indicated on the drawings and specified herein.

B. Conform with applicable provisions of the General Conditions, the Supplemental General Conditions and General Requirements.

C. See Sections 23 0500, 23 0548, 23 0549, 23 0593, 23 0700, and 23 0900 for additional requirements.

D. Comply with the Equipment General Requirements in Spec Section 23 0500.

1.2 SCOPE

A. Install control dampers supplied under Section 23 0900. Adjust dampers for smooth operation.

1.3 SUBMITTALS

A. Submit the following for review and approval:

1. All equipment shown on the equipment schedule and elsewhere on the drawings. Submit evidence or certification that equipment complies with ASHRAE Std. 90.1.

2. Ductwork construction standards, sheet metal, plenums, ductwork accessories, etc.

3. Flues and vents: Materials of construction and accessories. For vents with horizontal offsets or expansion joints, submit layout for review.

4. Dampers for fire and smoke control: For each type of damper proposed, submit manufacturer's literature demonstrating compliance with all aspects of the specifications and drawings. Submit manufacturer's installation instructions.

5. Air Filters and Filter Gauges

6. Grilles, Registers & Diffusers: Configuration, materials of construction, finish, mounting details, and performance data including throw, static-pressure drop, and noise ratings. Submit for type only, but supplier shall check and verify that the indicated diffuser type and sizing are appropriate for each area. Advise of any concerns in any areas.

7. Terminal Units:

a. Submit the following for each type of unit: Unit construction, materials, and wiring diagrams.

b. Submit the following for each size unit: Dimensional data, recommended flow ranges, and performance data (pressure drop and sound data) at maximum flow.

c. Submit a schedule showing the following for each terminal unit indicated on the drawings:

Tag number, max & min CFM, size, pressure drop, and heating system performance.

8. Layouts of systems covered by this section of the specifications. Layouts shall be at a scale appropriate for the areas shown. Include large scale sections as appropriate.
1.4 QUALITY ASSURANCE

A. Comply with the following codes & standards:

1. UMC 2012 Chapter 6 – Duct Systems
2. UMC 2012 Standard 6-2, Standard for Metal Ducts
3. SMACNA 2005 HVAC Duct Construction Standards – Metal and Flexible, including Addendums
4. SMACNA Round Industrial Duct Construction Standards – 2006
5. SMACNA Rectangular Industrial Duct Construction Standards – 2006

B. Component Characteristics

1. All components within ducts and plenums shall be non-combustible or shall have a flame spread less than 25 and smoke developed less than 50 when tested as a composite product per NFPA 255, ASTM E84, or UL 723, except where specifically permitted by the UMC and noted in the drawings or specs.

1.5 SOUND LEVELS

A. Sound levels attributable to mechanical equipment are designed to result in sound levels of NC 40 for offices, conference rooms, and NC 35 for etc., measured within the rooms. Mechanical equipment that has been substituted for the specified equipment shall perform within the specified equipment sound limitations, or will be replaced or adjusted as required. Sound levels attributable to duct vibration that result in noticeable noise or vibration to duct hangers, lighting fixtures, ceiling tees or diffusers shall be re-supported or adjusted until the disturbing noise is brought within acceptable limits.

1.6 DIMENSIONS

A. Compare all drawings and verify all dimensions both on the drawings and in the field before laying-out, cutting, and fabricating the work.

B. Refer to Section 23 0500, Common Work Requirements for HVAC, for coordination drawing requirements.

PART 2 - PRODUCTS

2.1 DUCTWORK AND PLENUMS

A. Materials: Construct all ducts, casings, plenums etc. from galvanized steel sheets except as indicated. Sheets shall be free of blisters, slivers, pits, and imperfectly galvanized spots. Reinforcing angles and bars, and duct support materials shall be same material as ductwork if exposed to the air stream, or galvanized steel if not exposed to the air stream.

2. Aluminum: Alloy 3003-H14
3. Stainless Steel: 340S5, provide No. 2B finish in exposed areas
4. Fiberglass Ductwork (Ductboard): Use only where specifically noted. Minimum 1-inch thick, 3 lb. density rigid fiberglass ductboard with glass fiber reinforced vapor barrier, UL Class 1, labeled on each board per UMC-06 Standard 6-5.
a. Properties:
 1) Thermal conductivity for 1-inch thickness shall not exceed 0.22 Btuh/SF-F at 75 deg F
 2) Noise reduction coefficient of 0.80 on Mounting No. 6.

b. Tape: 3-inch "Hardcast" mineral impregnated woven fiber tape with an actuator/adhesive applied in accordance with the manufacturer's directions, or thermlok heat sensitive tapes. Pressure sensitive tapes will not be accepted.

c. Owens-Corning Fiberglass, Johns Manville, Certain-Teed or equivalent. Flexural rigidity (E.I.) average shall not be less than 475.

5. Polyvinyl Coated Galvanized Steel: Minimum 4 mil polyvinyl coating. Foremost Manufacturing Company, Southfield, Michigan. Model PCD 4 by 1 for exterior coating only, or Model PCD 4 by 4 for both interior and exterior coating.

B. Flexible Ducts: Factory fabricated, listed as a Class 1 Air Duct per UL 181 with aluminum foil interior liner, corrosion resistant helix mechanically locked to fabric to ensure dimensional stability, helix separated from air stream, R-5 fiberglass insulation, and metalized outer vapor barrier. Ducts shall be rated at 10-inch positive pressure, 5-inch negative pressure, 0.1 perm per ASTM E96, and -20 to +250°F. Flexmaster Type 3M, Thermaflex M-KC, OAE.

C. Ductwork Accessories

1. Sealers: Water based, for use on galvanized steel and with the other materials specified herein, suitable for use at -20 to +200°F and duct pressures to 10 inches wg, dry to the touch within 12 hours, sufficiently flexible to pass a 0.25-inch mandrel test, listed per UL-181A & 181B, and suitable for storage and application at 40–110°F. Approved Manufacturers: Carlisle Coatings & Waterproofing “Hardcast,” Foster, RCD, AM Conservation Group, OAE.

2. Tapes: 4” woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal. Water, mold, and mildew resistant for indoor and outdoor service. Sealant shall be modified styrene acrylic.

2.2 SHEET METAL ACCESSORIES

A. Dampers: Factory fabricated, suitable for use with air at -20 to +240°F, galvanized steel housing and blades except as noted, rated for indicated pressures in either direction and performance rated per AMCA-500.

1. Shafts: Square or hexagonal steel, 3/8-inch or 1/2-inch, continuous through damper, mechanically fastened to damper blade, and extending through frame as required for actuator or standoff bracket and locking quadrant as required by table below.

2. Bearings: Provide for each side of each shaft, molded synthetic or stainless steel sleeve type.

3. Multi-blade dampers: Except as indicated, provide parallel-blade for 2-position applications and opposed blade for modulating applications. Provide jackshafts as required to drive large dampers.

4. Air pressure drop shall not exceed:

 a. Dampers rated at 1500 FPM: ____ in wg at 1500 FPM
 b. Dampers rated at 4000 FPM: ____ in. wg at 4000 FPM

5. The dampers described in this section are assigned Type Numbers D1 through D23. The following table summarizes key characteristics of each type of damper. Drawings and Part 3 – Execution, indicate which type of damper to use in each application.
<table>
<thead>
<tr>
<th>Type</th>
<th>Shape</th>
<th>Blade</th>
<th>Max Size (inches)</th>
<th>Multiple Sections</th>
<th>Rated Velocity (FPM)</th>
<th>Rated Shutoff Press. (in. wg)</th>
<th>Seals</th>
<th>Leakage (CFM/SF @ 1 in. DP)</th>
<th>Notes</th>
<th>Ruskin Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Rect</td>
<td>Flat</td>
<td>36 x 12</td>
<td>No</td>
<td>1500</td>
<td>2.5</td>
<td>No</td>
<td>10</td>
<td>1</td>
<td>MD15</td>
</tr>
<tr>
<td>D1</td>
<td>Rect</td>
<td>3V</td>
<td>48 x 48</td>
<td>No</td>
<td>1500</td>
<td>2.5</td>
<td>No</td>
<td>10</td>
<td>1</td>
<td>MD15</td>
</tr>
<tr>
<td>D2</td>
<td>Rect</td>
<td>Flat</td>
<td>36 x 12</td>
<td>No</td>
<td>1500</td>
<td>2</td>
<td>No</td>
<td>80</td>
<td>1</td>
<td>MD25</td>
</tr>
<tr>
<td>D3</td>
<td>Rect</td>
<td>3V</td>
<td>48 x 48</td>
<td>Yes</td>
<td>1500</td>
<td>2</td>
<td>No</td>
<td>80</td>
<td>1</td>
<td>MD35</td>
</tr>
<tr>
<td>D4</td>
<td>Rect</td>
<td>3V</td>
<td>48 x 72</td>
<td>Yes</td>
<td>1500</td>
<td>2.5</td>
<td>No</td>
<td>40</td>
<td>1</td>
<td>CD35</td>
</tr>
<tr>
<td>D5</td>
<td>Rect</td>
<td>3V</td>
<td>48 x 72</td>
<td>Yes</td>
<td>1500</td>
<td>2.5</td>
<td>Yes</td>
<td>4</td>
<td>2</td>
<td>CD36</td>
</tr>
<tr>
<td>D6</td>
<td>Rect</td>
<td>Airfoil</td>
<td>60 x 72</td>
<td>Yes</td>
<td>4000</td>
<td>6</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>CD50</td>
</tr>
<tr>
<td>D7</td>
<td>Rect</td>
<td>Airfoil</td>
<td>60 x 72</td>
<td>Yes</td>
<td>4000</td>
<td>6</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>CD60</td>
</tr>
<tr>
<td>D20</td>
<td>Round</td>
<td>Flat</td>
<td>20</td>
<td>No</td>
<td>1500</td>
<td>2</td>
<td>No</td>
<td>40</td>
<td>1</td>
<td>MDSR25</td>
</tr>
<tr>
<td>D21</td>
<td>Round</td>
<td>Double</td>
<td>40</td>
<td>No</td>
<td>4000</td>
<td>10</td>
<td>Yes</td>
<td>4</td>
<td>2</td>
<td>CDR25</td>
</tr>
<tr>
<td>D22</td>
<td>Round</td>
<td>Double</td>
<td>24</td>
<td>No</td>
<td>4000</td>
<td>6</td>
<td>Yes</td>
<td>6</td>
<td>2</td>
<td>CDSR25</td>
</tr>
<tr>
<td>D23</td>
<td>Oval</td>
<td>Double</td>
<td>72 x 24</td>
<td>No</td>
<td>4000</td>
<td>10</td>
<td>Yes</td>
<td>4</td>
<td>2</td>
<td>CDO25</td>
</tr>
</tbody>
</table>

Note 1: Provide locking hand quadrant and 2-inch standoff bracket
Note 2: Aluminum Construction

B. Flexible Connectors: Except as noted flexible connectors shall be heavy fiberglass cloth; coated to be air tight, water tight, fire retardant; suitable for temperatures of -20 to +200°F; rated for 10 in. wg positive or negative; with tensile strength minimum 450 lb/inch in the warp and 340 lb/inch in the filling. Provide flexible connectors in 3-3-3 configuration, with 3-inch galvanized steel strip along each edge and 3-inches of flexible fabric in the center.

1. Standard Applications: Flame spread 20, smoke developed 40, Ventfabrics Ventglas OAE
2. Applications Exposed to Sun and Weather: Double coated with du Pont Hyphalon, Ventfabrics Ventlon OAE.
3. Applications from 200 – 500°F: Tensile Strength 285 lb/inch in the wrap and 185 lb/inch in the filling. Ventfabrics Ventsil OAE
4. Corrosive Applications: Teflon coated, Ventfabrics Ventel OAE.

C. Duct and Plenum Access Doors: Galvanized steel, gasketed. Size as required to properly inspect and service components located within the ductwork. Ruskin, Acudoor, Ductmate, OAE.

1. Rectangular ducts up to 2-inch positive or negative SP: Minimum 22 gauge frame and door thru 12-inch size, 20 gauge door for larger sizes, double gasketed (between door and frame, and between frame and duct) with cam locks, either hinged or removable. Ruskin ADH22, ADC22, ADHW22, or ADCW22, Ventfabrics, OAE
2. Round or Rectangular Ducts to 12-inch Positive Pressure: Removable oval sandwich style with gasketed inner door, insulated outer door, and large hand knobs. Ruskin ADR and ADF.
3. Ducts to 12-inch Negative Pressure: Ruskin ADHP-3.
4. Plenum Access Doors: Factory fabricated frame and door rated to 4-inch positive or 8-inch negative pressure. Provide mill finish and neoprene seals to limit leakage to less than 0.1 CFM/inch perimeter with door closed. Doors shall open against air pressure.

 a. Frame: Extruded aluminum with 1.5-inch flange and mitered corners
 b. Door: Extruded aluminum mitered frame, double wall 24-gauge galvanized steel panel with minimum R-5 insulation isolated from the air stream, full-length piano hinge and two heavy-duty latches similar to Ventlok 310.
c. Approved Manufacturers: Ruskin GPAD or approved equal.

D. Turning Vanes:
 1. Single wall: Per SMACNA HVAC Duct Construction Standards Figure 2-3 & 2-4.
 2. Double wall: Airfoil shape with smoothly rounded entry nose and extended trailing edge, minimum 2” x 3” vane crossection, hot dipped galvanized steel, 26-gauge vanes, 24-gauge runner, each vane double pinned to each runner, field adjustable to required elbow aspect ratio. Performance shall not exceed the following for a 24 x 24 elbow at 2000 FPM average: Air pressure drop 0.105 in. wg; sound generated 54 dB re 10^-12 watts. Aero/Dyne Co. Model HEP, Airsan, Elgen, or equivalent.

E. Roof Curbs and Equipment Support Rails: Factory fabricated, minimum 12-inch high, galvanized steel, configured to account for roof pitch where pitch exceeds 1/4-inch/ft or where required by manufacturer of supported equipment. Coordinate with roofer and provide cant and step if needed to match roof construction.
 1. Roof Curbs: 1.5-inch fiberglass insulation with nominal 2" x 2" wood nailer. Provide damper tray where a damper is indicated. Thycurb TC, Greenheck, OAE.
 2. Equipment Support Rails: Nominal 2” x 4” wood nailer. Thycurb TEMS, Greenheck OAE

F. Louvers: 4-inch extruded 6063-T5 aluminum alloy frame and blades with flange, mill finish, and 1/2-inch galvanized steel bird screen.
 1. Structural: Designed and furnished to carry wind load of not less than 20 psf. Intermediate mullions and supports if provided as part of louver, shall not be visible from the exterior.
 2. Air Pressure Drop: Less than 0.20 in wg at 1000 FPM over free area (8.58 square feet), intake or exhaust per AMCA 500 based on 48 x 48 test sample.
 3. Moisture Penetration: Less than 0.01 oz/sf over 15 minute test per AMCA-500 at 873 FPM intake over free area based on 48 x 48 test sample.
 4. Ruskin ELF375DX OAE.

G. Acoustic Louvers
 1. Ruskin ACL 1245, 12 inches deep, with 45 degree blade angle, 22 percent free area (48" x 48" typical unit with .15 inch w.g. maximum pressure drop, at 4277 cfm air flow). Frame and blade material shall be galvanized steel. Free field noise reduction shall be:

<table>
<thead>
<tr>
<th>Band Frequency (Hz)</th>
<th>Reduction (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>14</td>
</tr>
<tr>
<td>125</td>
<td>13</td>
</tr>
<tr>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>1000</td>
<td>23</td>
</tr>
<tr>
<td>2000</td>
<td>22</td>
</tr>
<tr>
<td>4000</td>
<td>20</td>
</tr>
<tr>
<td>8000</td>
<td>20</td>
</tr>
</tbody>
</table>

 2. Provide bird-screen, steel channel frame, Ruskatherm blanket insulation, and perforated steel interior surface that covers insulation.

H. Thermometers: As specified in Section 23 0505.

I. Barometric Pressure Balance Dampers: Air Balance, Inc. units with adjustable counter weight, aluminum air foil design blades, nylon bearings. Match frame assembly to wall or duct.

2.3 FLUES AND VENTS FOR FUEL-FIRED EQUIPMENT

A. General: Factory-built metallic vent system, UL Listed components. Each component shall bear indication of its UL listing.
1. Heat Resistant Paint: Glidden, Metallite OAE.
2. Approved Vent Manufacturers: Metal Fab, Metalbestos, Schebler, Ampco, OAE.

B. Type B Vent: Listed per UL 441 for use with UL Listed Category I (gas or propane fired, negative pressure, non-condensing) appliances to 530°F, round or flat oval as indicated, double wall with aluminum alloy inner wall, galvanized steel outer wall, both walls hemmed to eliminate sharp edges, minimum 1/4-inch air space for sizes 6-inches and smaller and minimum 1/2-inch air space for sizes 7-inches and larger, with guides to maintain air space. Provide UL Listed vent cap. Metal Fab Type M.

C. Type IV Vent: For use with Category II or Category IV appliances (natural gas or propane fired, positive or negative pressure, condensing, not exceeding 550°F exhaust temperature). Listed per UL-173S, double wall with 1-inch clearance and spacers to maintain alignment.

1. Inner Pipe: AL2904C superferritic SS manufactured by Allegheny Ludlum, with welded seams, connected with V-bands, and sealed with high temperature silicone sealant. Rated at 6 inches water. Thickness: 0.015-inch through 12-inch size; 0.024-inch for 14-inch and larger sizes.
2. Outer Pipe: Seal with V-band of same material as outer pipe. Provide silicone sealant for portions exposed outdoors. Thickness: 0.018-inch through 12-inch size; 0.024-inch for 14-inch and larger sizes.
3. Options and Accessories:
 a. Outer Wall: Aluminized steel 316 SS.

4. Metal Fab Type CG

2.4 DAMPERS FOR FIRE AND SMOKE CONTROL

A. General: Factory assembled and UL listed as an assembly, suitable for horizontal or vertical air flow and for ducted or un-ducted applications. Fire dampers (FDs) shall be listed per UL 555, smoke dampers (SMDs) shall be listed per UL 555S, and fire/smoke dampers (FSDs) shall be listed per UL 555 and UL 555S. Units shall be galvanized steel except as noted. Approved manufacturers: Greenheck, Ruskin, Potorff, or approved equal.

B. Combination Fire/Smoke Dampers: Factory assembled complete with damper, actuator, thermal link, and all specified accessories, all mounted on a sleeve.

1. Construction: Round blades, rectangular parallel blades and rectangular opposed blades are acceptable, except dampers shall be rectangular opposed blade type when installed in any of the following conditions: within 10 diameters of a fan or supply register, within 3 diameters of an elbow. Internal frames in rectangular FSDs shall be low profile type for ducts 17”H and less.
2. All components factory installed and wired, including actuator, thermal link, position switches, temperature over-ride (if specified), test switch (if specified), etc. Mount all such components on outside of FSD sleeve to the side of duct (not top or bottom) except where indicated or approved. FSDs must be suitable for rotating the unit 180-degrees so these components can be on either side of the duct.
3. Air pressure drops shall be certified per AMCA 500D. Pressure loss coefficient C_o shall not exceed the following when tested per AMCA Figure 5.3:
<table>
<thead>
<tr>
<th>Size (in)</th>
<th>3-V Blade</th>
<th>Airfoil Blade</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 12</td>
<td>2.41</td>
<td>2.01</td>
<td>NA</td>
</tr>
<tr>
<td>24 x 24</td>
<td>0.65</td>
<td>0.60</td>
<td>NA</td>
</tr>
<tr>
<td>36 x 36</td>
<td>0.44</td>
<td>0.27</td>
<td>NA</td>
</tr>
<tr>
<td>12 x 48</td>
<td>0.76</td>
<td>0.91</td>
<td>NA</td>
</tr>
<tr>
<td>12 Round</td>
<td>NA</td>
<td>NA</td>
<td>0.33</td>
</tr>
<tr>
<td>24 Round</td>
<td>NA</td>
<td>NA</td>
<td>0.23</td>
</tr>
</tbody>
</table>

4. Listed for installation within wall, floor or ceiling assemblies as indicated on drawings.
 a. Ratings, except as noted: 1.5-hr Fire Rated, Leakage Class 1, 350°F, 4-inch Static Pressure, Dynamic.
 1) Up to 1600 FPM: Greenheck FSD-211 (3-V blade type), OFSD-211, or FSDR-511 (round).
 2) Up to 3000 FPM: Greenheck FSD-311 or 311V (airfoil blade) or OFSD-311.
 b. 3-Hr Rated Walls: Greenheck FSD-231.
 c. Stainless Steel: Greenheck SSFSD-211 or SSFSDR-511 (round).

5. Actuators: Electric 2-position, 115/1/60 (provide factory wired transformer if required), normally closed, spring return, NEMA-1 except as noted. Actuator shall fully re-open damper when power is restored after any power interruption.

6. Accessories
 a. Transitions: Provide round-to-rectangular, oval-to-rectangular, or rectangular-to-rectangular transitions as appropriate for the application.
 b. Thermal Link: Provide re-settable bi-metallic thermal link to initiate closure when the air temperature within the duct rises to 165°F. Where indicated provide thermal links for operation at 212°F, 250°F, or 350°F. Thermal link shall be easily resettable from outside the duct.
 c. Position Switches: Provide dry contacts for remote monitoring of damper open and closed positions.
 d. Retaining plates and angles: Provide as required. Galvanized steel specifically designed for the particular FSD and included as part of the UL Listed assembly.
 e. Installation decals: Provide installation decals on the sleeve which give the installer clear installation instructions.
 f. Temperature Override Control: Provide controls so that the thermal link can be over-ridden and the FSD opened for smoke control, even if the air temperature exceeds the setting of the thermal link, provided the temperature does not exceed 350°F.

C. Smoke dampers: Similar to fire/smoke dampers noted above, except as follows:
 1. Smoke dampers shall comply with UL 555S, but need not comply with UL 555.
 2. Smoke dampers need not have a fire rating.
 3. The thermal link and temperature override are not applicable.
 4. Suitable for installation within a wall, floor or ceiling assemblies as indicated.
 a. Ratings, except as noted: Leakage Class 1, 350°F, 4-inch Static Pressure, Dynamic.
 1) Up to 1600 FPM: Greenheck SMD-201 (3-V blade type) or SMDR-501 (round).
 2) Up to 3000 FPM: Greenheck SMD-301, 301V (airfoil blade) or SMDR-401.
 b. 6-inch pressure rated: Similar to Greenheck SMD-401
D. Fire Dampers: Dynamic rated, suitable for closing against 8-inch differential pressure. Curtain type with sleeve and 165°F replaceable fusible link, resettable. Provide round-to-rectangular, oval-to-rectangular, or rectangular-to-rectangular transitions as appropriate.

1. 1.5-hr rated: Greenheck DFD-155
2. 3-hr Rated: Greenheck DFD-355.
3. Provide 212°F fusible links for high temperature applications.

E. Ceiling Radiation Dampers: UL Classified for use with fire rated floor/ceiling assemblies, with 165°F fusible link replaceable through the damper assembly, 1.5-hr rated except as noted. Greenheck CRD-1, CRD-2 (round), CRD-60, or CRD-60X. Provide 212°F fusible link and 3-hr rated dampers where indicated.

2.5 FILTERS AND FILTER GAUGES

A. Rated per ASHRAE Std. 52.1; Class 1 or 2 per UL Std. 900; glass fiber media; suitable for operation from -20°F to +170°F; corrosion resistant; suitable for installation with pleats either horizontal or vertical, and for air flow horizontal, vertical upflow, or vertical downflow; suitable for face velocity up to 625 FPM. Unless specified elsewhere, pre-filters shall be MERV-7, and final filters (where specified) shall be MERV-14. AAF, Camfil Farr, or approved equal.

| MERV RATING |
|---|---|---|---|---|---|---|
| Description | 7 | 11 | 14 | 11 | 14 | 11 |
| Configuration | | | | | | High Capacity |
| 2-inch or 4-inch | 2-inch Cartridge | 6-inch Cartridge | 12-inch Cartridge |
| Initial Resistance | in. wg. | 0.26 | 0.25 | 0.58 | 0.39 | 0.58 | 0.29 | 0.49 |
| Rated Velocity | FPM | 500 | 500 | 500 | 500 | 500 | 500 |
| Max Velocity | FPM | 625 | 625 | 625 | 625 | 750 | 750 |
| Recommended Final Resistance | in. wg. | 0.7 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| Gross Media per 24 x 24 Filter | SF | 14 Pleats per foot | 62 | 62 | 105 | 125 | 175 | 175 |
| Housing | Cardboard | Polystyrene or Aluminized Steel | Polystyrene or Aluminized Steel | Polystyrene or Aluminized Steel |
| Frame | Channel | Gasketed | Gasketed | Gasketed |
| AAF Model | Perfect Pleat | VariCel RF | VariCel M-Pak | VariCel V |
| Camfil Farr Model | 3030 | RigaFlow |

B. Filter Gauges: Provide a filter gauge for each bank of filters. Gauges shall be magnehelic type with static pressure tips and inter-connecting piping. Ranges shall be 0-1 inch w.g. for all filters except bag filters which shall have a range of 0-2 inches w.g.

2.6 GRILLES, REGISTERS AND DIFFUSERS

A. General: Performance rated per ASHRAE Std 70, Method of Testing for Rating the Performance of Air Outlets and Inlets, steel with baked white enamel finish except as noted, for installation on a fixed surface or a lay-in T-bar ceiling as indicated on architectural drawings, rigidly constructed, vibration
free, with inlet collar of sufficient length to connect inlet ductwork, sized as shown on drawings. Where frames are provided for installation in fixed surfaces, frames shall be approximately 1-1/8” wide. Sound performance rated per ADC and based on room absorption of 10dBre10^{-12} Watts and one diffuser.

1. Approved Manufacturers: Price, Krueger, Titus, Anemostat, OAE

B. Types as follows. See also the Grille and Diffuser Schedule on drawings.

1. Square Ceiling Diffusers: Louvered type, 4-way pattern, 1-piece smooth aerodynamic surfaces with no corner joints, three louvers for 12-inch sizes, four louvers for 24-inch sizes, removable louver assembly, round neck, to provide stable, horizontal air flow without dumping down to 75 FPM inlet velocity for ceiling applications, and down to 20% of maximum air flow for non-ceiling applications. Price SCD.

2. Round Ceiling Diffusers: Louvered type, 360-degree distribution, four separate 1-piece smooth aerodynamic louvers, adjustable air flow pattern (horizontal vs. vertical), round neck. Price RCD.

3. Ceiling Return, Exhaust and Transfer Grilles: 1/2” x 1/2” x 1/2” egg crate type, steel frame for surface mounting or T-bar ceiling per application, aluminum grid. Price Series 80.

4. Ceiling Rectangular Directional Diffusers: Louvered type, directional pattern as indicated on drawings, with removable louver assembly. Price SMD.

7. Ceiling or Sidewall Linear Supply Diffusers: Extruded aluminum with baked white enamel finish, frame suitable for lay-in or surface mounting as per the architectural drawings, all aluminum construction, flat black interior surfaces, air flow deflection vanes to provide each slot with individually and fully adjustable 180° air pattern from horizontal to vertical or in between, self-aligning devices to ensure proper alignment where multiple sections are required, and corner pieces as necessary for a continuous appearance. Provide galvanized steel side inlet plenum matched to diffuser, with plenum extension if necessary to match adjacent construction. Performance data is based on 3/4-inch slots unless otherwise indicated. See plans for required air flow, diffuser length, and number of slots. Price SDS with SDA or SDB plenum, Krueger 1910, or equivalent.

8. Ceiling or Sidewall Linear Return Registers: As specified for sidewall linear supply diffuser except without air flow deflection vanes. Price SDS.

9. Stainless Steel Sidewall Return/Exhaust Registers: Fixed horizontal blades at 1/2” spacing and 45° deflection, flange for surface mounting, and SS 90° quick-release fasteners to mount grille to frame. Provide mill finish for blades and No. 4 finish for flanges. Price Model 735H.

10. Stainless Steel Slot Diffuser: Consist of a 0.037”, 304 stainless steel plenum with continuous welded joints and chamfered corners to facilitate cleaning. The diffuser face shall be stainless steel construction with slots and fixed pattern deflectors. Plenums shall have stainless steel inlet collars complete with removable dampers from plenum face. The removable dampers shall be opposed blade type, constructed of stainless steel. Damper shall be adjusted without removing face of diffuser. The diffuser face shall be attached by stainless steel 90° quick-release fasteners and safety cable to open easily. The diffuser face, mounting frame, face and interior surface of plenum shall have a #4 finish. Krueger Model HORDSS or equivalent.

11. Laminar Flow Diffuser: Extruded aluminum construction and plated steel to inhibit corrosion. The perforated face plate, damper deflector, interior baffles and diffuser back pan plenum assembly shall be of 0.040 aluminum. The perforated face plate shall open easily with 90° quick-release fasteners and safety cable for easy cleaning and damper adjustment. B11 Sterile White-Thermal Setting finish. Krueger Model LFD or equivalent.
2.7 FANS

A. General

1. Construction
 a. Factory fabricated fan, motor, drive and accessories, listed per UL, with air flow rated per AMCA 211 and sound rated per AMCA.
 b. Fan wheel: Statically & dynamically balanced, with shaft sized so first critical speed is minimum 25% above maximum operating speed.
 c. Motor and Drive: Premium efficiency ODP motor per Spec Section 23 0500, direct drive or belt driven as indicated in schedule on drawings, bearings with 100,000 hr L-10 life.
 1) Variable Speed Applications: Provide Class F insulation.
 d. Belt Drives: Adjustable pitch sheave up to 5 Hp, fixed pitch above this Hp, cast and machined pulleys with all components sized for 150% of motor Hp.
 e. Dampers:
 f. Accessories:
 1) Roof Curb: Minimum 12-inch galvanized steel, fiberglass insulated, with wood nailer, damper tray and flange. Provide cant and step if needed for proper seal with roof.

2. See Section 23 0548 for Vibration Isolation requirements.

B. Centrifugal Roof Exhaust Fans

1. Leakproof construction.
2. Housing: Spun aluminum construction, reinforced wind band welded to one-piece curb cap with mounting holes on the side and integral spun venturi, spun aluminum motor compartment with readily removable cover and breather tube. All other structural components shall be galvanized steel.
3. Fan wheel: Backward inclined, centrifugal, non-overloading.
4. Motor and Drive: Motor out of the air stream, cooled with ambient air. Motor, drive and fan wheel resiliently mounted on neoprene isolators.
5. Electrical: Disconnect NEMA-1 if protected from the weather, or NEMA-3R if exposed to the weather, wired to motor, with all wiring and components per NEC and either UL Listed or UL recognized.
6. Accessories: Stamped aluminum nameplate, hinge kit to allow tilting fan up to inspect wheel, retaining chains, conduit chase and roof curb.
7. Approved Manufacturers: Greenheck Type, G, GB, CUE or CUBE as indicated. Cook, ACME, OAE.

2.8 COILS

A. Galvanized steel casing, copper tubes and aluminum fins except as noted, with tubes mechanically expanded into fins, circuited to allow completely draining and venting coil, drain and vent connections, with performance rated per ARI. Do not exceed scheduled air or water pressure drops by more than 5 percent.

2.9 AIR HANDLING AND AIR CONDITIONING UNITS

A. General
1. Acoustical performance shall be established per ARI 260 rating procedures. Measurements will be taken in an ANSI 12.32 qualified room using a calibrated reference source per ARI 250. Sound data supplied shall meet or be less than requirements established later in this Specification. (Data presented in dBA, sones, Bels is not acceptable.)

B. Rooftop Evap Cooled Makeup Air Unit

1. General: Factory fabricated, packaged rooftop, direct-fired with evap cooling, ETL Listed to ASNI Z83.4-1999, factory wired and tested (gas train, electrical components and air flow controls),
2. Unit Construction: Heavy gauge G90 galvanized steel casing with corrosion resistant fasteners, weatherproof with standing seam where roof panels are joined, all metal-to-metal surfaces sealed where exposed to the weather, 1-inch fiberglass insulation, discharge configuration as indicated on drawings, access doors or removable panels for ready access to all components, and lifting lugs.
3. Cooling Section: Evaporative type, SS module construction, 12-inch media with 90% cooling effectiveness, with float-type makeup, 120V pump with discharge piping and corrosion-resistant distribution header, drain & overflow connections.
4. Fan Section: AMCA rated for both performance and sound, centrifugal type statically and dynamically balanced, permanently lubricated bearings with 100,000 Hr L-10 life at maximum cataloged speed, belt driven with drive sized for 150% of motor HP, pulleys with machined surfaces, adjustable sheaves for 15 Hp and less, motor per Section 23 0500, fan discharge flexible connection, and with fan and motor mounted on common base.
5. Electrical and Controls: Factory wired for service from a single-point power connection, with all necessary power and control components mounted in accessible and weather-protected enclosures, all wiring per the NEC, control transformer with secondary fusing, contacts for remote start/stop and monitoring of fan status, and discharge temperature sensor with all components necessary for discharge temperature control. All components UL listed, recognized, or classified where applicable.
6. Accessories: Double wall construction, motorized intake damper, 2-inch aluminum mesh filters sized for less than 550 FPM, dirty filter switch, fan and motor base spring isolated with minimum 1-inch static deflection, discharge fan configuration as shown on drawings, inlet weather hood with bird screen, louvered inlet with bird screen, minimum 24-inch insulated roof curb of G90 galvanized steel, evaporative cooler media with Class II rating per UL 900 (e.g., GLASdek), automatic blowdown controls (timed blowdown is acceptable), disconnect switch, fan motor starter, premium efficiency motor, and 115V convenience receptacle in NEMA 3R enclosure.
7. Approved Manufacturers: Greenheck Model DGX, Spec Air, Trane, Reznor, or approved equal.

PART 3 - EXECUTION

3.1 DUCTWORK AND PLENUMS

A. Ductwork

2. Pressure Classes: Construct ductwork to the following pressure classes:

<table>
<thead>
<tr>
<th>Duct Element Description</th>
<th>Relative Pressure</th>
<th>Pressure Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

AIR TEMPERING SYSTEM & EQUIPMENT
233000 - 11

4. Sealing: Seal ductwork and plenums as follows:

<table>
<thead>
<tr>
<th>Seal Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>All transverse joint, longitudinal seams and duct wall penetrations.</td>
</tr>
<tr>
<td>B</td>
<td>All transverse joints and longitudinal seams.</td>
</tr>
<tr>
<td>C</td>
<td>Transverse joints</td>
</tr>
</tbody>
</table>

a. Apply duct sealer to inside of seams and joints. Do not use pressure sensitive tape as the primary sealant.

5. Clearance to earth: Maintain minimum 4-inch separation between ductwork insulation and earth.

6. Openings in Ductwork: During installation protect the open ends of ducts to prevent debris and dirt from entering.

7. Provide turning vanes in square elbows of low velocity supply and exhaust ductwork.

8. Collars: Where exposed ducts pass through walls, floors, or ceilings, provide a tight-fitting, flanged sheetmetal collar around duct and tight against finished surface to cover opening and present a neat appearance. Lock collar to duct.

9. Cross Breaking: Cross-break low velocity rectangular sheetmetal ducts on all four sides. Cross break sheet metal between standing seams or reinforcing angles. The center of cross break shall be of the required height to assure surfaces being rigid. Do not cross-break high velocity plenum panels.

10. Grilles Registers and Diffusers: Install plumb, affix to general construction as appropriate, make air-tight connection to ductwork, and adjust air flow pattern to achieve appropriate velocities in the occupied zones. Request direction from Engineer if any question exists regarding proper air flow adjustment.

11. Duct Thermometers: Provide thermometers to indicate mixed air, outside air, and supply air of indoor air handling units over 2,500 cfm and where shown on the Drawings.

12. Test Holes: Provide test holes in ducts at locations where testing is required per Section 23 0593 and as requested by the T&B agent. Close test holes with rubber plugs. Reseal all insulated ductwork with the same insulation, jacket and vapor barrier material after T&B is complete.

13. Closure Systems:

b. Flexible Air Ducts: Comply with UL 181B – Standard for Closure Systems for Use with Flexible Air Ducts and Air Connectors.

14. Factory Made Air Ducts: Install in accordance with the terms of their listing and the manufacturer’s recommendations.

15. Acoustic Insulation: See Section 23 0700, HVAC Insulation. Fabricate ductwork so the dimensions indicated on the drawings are the clear dimensions for air flow inside the acoustic insulation.

16. Coordination with Building Construction

a. General: The drawings show the general intended configuration of the ductwork. Provide additional offsets where necessary to coordinate with the building construction or with the work of other disciplines. Transition ductwork as required at no change in contract price. Where this is necessary, submit for review and maintain the indicated flow areas.

b. Ductwork is frequently routed through bar joists and between bar joists. Coordinate duct locations with joist submittals prior to fabrication.

B. Special Applications

1. Moisture Laden Ductwork: Stainless steel with all joints liquid-tight by continuous external welding. Welds shall be free from pits, runs, spatter and other imperfections. Pitch horizontal ductwork downward to intake opening. Where traps occur that collect water, provide a 1/2-inch half coupling welded to the bottom of the duct and pipe to spill over nearest drain. Include a properly sized trap in the drain piping.

2. Fume Hood Ductwork: Stainless steel with seams and joints continuously welded on the exterior. Spiral lock seam is not acceptable.

3. Shower Room Exhaust Ductwork: Aluminum

4. Ducts Handling Corrosive Vapors: Either stainless steel or galvanized steel with internal polyvinyl coating constructed and sealed as noted.

5. Underslab Ductwork: Galvanized steel, polyvinyl coated on the exterior, constructed and sealed for 2-inch SP, insulated per Section 23 0700, and concrete encased. Concrete thickness shall be as indicated on the drawings, but not less than 2-inch thick.

 a. Take care to prevent damaging ductwork when concrete is poured. Work with and provide guidance to the contractors responsible for pouring concrete and responsible for installing the building moisture protection system.

 b. Anchor ductwork not more than 4-ft on centers to prevent floating. Use minimum 12-gauge wire or 16-gauge straps. Protect openings in ductwork with wood or metal blocking.

 c. Pour concrete in maximum 12-inch lifts with each layer being allowed to set before pouring the next. Do not use power vibrators shall not be used in placement of concrete on or around ducts.

6. Fiberglass Ductwork (Ductboard)

 a. Provide fiberglass ductboard only where specifically indicated on the drawings and in this specification.

 c. The drawings indicate required clear inside dimensions for air flow.

 d. Where a duct constructed of ductboard penetrates a wall or floor which requires a fire damper, smoke damper, or fire/smoke damper, install the FD, SMD or FSD in the wall per its listing, make sheet metal connections to the damper if required, and then transition
7. Exterior Ductwork: Install ductwork as specified herein and insulate per Section 23 0700. Then enclose the exposed top and sides of ductwork with 28 gauge galvanized steel or 26-guage aluminum to protect the insulation. Repair any damage to the insulation jacket. Slope sheet metal enclosure to shed water.

C. Hangers and Supports

1. Securely support ducts per SMACNA and UMC Table 6-7. Provide support at each concentrated load and at each change in direction. Provide supports on each side of rectangular ducts and equipment. Where vertical ducts pass through floors or roofs, support with angles or other steel members attached to minimum two opposite sides of duct. Size supports to rigidly support the ductwork. Provide lateral support.

2. Hangers for terminal units: Minimum four 1” x 1/8” galvanized steel straps or two angle trapeze supports.

3. Horizontal Round Ducts: 30 inches and larger in diameter: Provide 2” x 2” x 1/8” black steel rolled angle ring on 6-ft centers, and support from angle.

D. Plenums

1. Single Wall Plenums: Shop fabricated minimum 16 gauge galvanized sheet steel. Horizontal and vertical panels are to be fabricated of 2’ x 10’ sheets. Unless otherwise dimensioned on the Drawings, access door frames are not to exceed 16-3/4 inch width. Where door width exceeds 16-3/4 inches, vertical panels shall be fabricated around 2” x 2” x 1/4” angle. If the plenum height or width exceeds 9 feet, provide a 2-1/2” x 1/8” continuous galvanized steel strip between each horizontal and vertical seam. Provide high velocity cement at each joint during panel assembly. Panels are to be bolted as shown on the details or tack welded at the Contractor's option; however, enough panels must be bolted to allow removal of equipment from the plenums. Cover interior surfaces with 2-inch thick, acoustical lining.

 a. Plenum Access Doors: Minimum two fastening devices that can be operated on either side of the door; these devices to be readily operated and moving parts to have bronze pins. All parts of the door shall be constructed of galvanized iron and shall be airtight. Latches: "Ventlock" No. 310 OAE.

2. Double Wall Plenums: Factory fabricated, Semco or equivalent. Submit shop drawings for review including overall configuration, construction details, access doors, erection drawings and structural calculations stamped by a registered structural engineer.

 a. Factory fabricated, minimum 18 gauge galvanized steel outside, perforated galvanized steel inside, with 2-inch sound insulation between. Plenums downstream of final filters shall have solid inner panel.

 b. Heat transfer coefficient shall not exceed 0.0575 BTUH/SF-F at 75 deg F mean temperature. Pressure Ratings: 12 in. wg positive and 10 in. wg negative.

 c. Noise attenuation shall be as follows in decibels, re 10^(-12) watts.

<table>
<thead>
<tr>
<th>OCTAVE BAND</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation, db:</td>
<td>26</td>
<td>30</td>
<td>36</td>
<td>41</td>
<td>34</td>
<td>36</td>
<td>44</td>
<td>37</td>
</tr>
<tr>
<td>Noise Absorption Coeff:</td>
<td>0.22</td>
<td>0.39</td>
<td>1.20</td>
<td>1.36</td>
<td>1.03</td>
<td>0.84</td>
<td>0.74</td>
<td>0.68</td>
</tr>
</tbody>
</table>

3.2 DUCTWORK ACCESSORIES
A. Dampers: Install dampers with shafts horizontal. Locate dampers so that actuators are readily accessible. Verify that dampers operate smoothly.

1. Manual Dampers (Balancing Dampers): Damper Types D1 through D23 are all suitable for use as manual balancing dampers. Provide locking quadrants.

2. Automatic Applications: The following damper types may be used for automatic applications: D4, D5, D6, D7, D21, D22 and D23. Provide damper actuators per Section 23 0900.

B. Flexible Connectors: Provide flexible connectors at locations indicated on the drawings and at the inlet and outlet of each fan directly connected to duct system. Select flexible connectors appropriate for the application. Provide steel spring vibration isolators spanning across flexible connections of isolated fan housings to prevent blow-apart due to horizontal displacement of fan housings.

C. Access Doors: Provide as required for access to all components located within ductwork. Locate to facilitate access to such components. Size as appropriate. In addition to locations specifically called out on the drawings or elsewhere in these specs, provide access doors at the following: FDs, SMDs, FSDs, instrumentation mounted within ductwork, fan bearings.

D. Turning Vanes: Provide turning vanes in square elbows of all supply ducts. Single wall turning vanes may be used in ducts up to 1500 FPM and 24-inch vane length. Provide double wall turning vanes in ducts exceeding either of these criteria.

E. Roof Curbs and Equipment Support Rails: Coordinate the location of roof curbs and rails with the roof structure, ductwork distribution, and other work. Install after roof deck is installed but before roof is insulated. Mount curbs and rails securely to deck per manufacturer’s recommendations. Provide counterflashing as required.

F. Louvers: Coordinate louver size and construction with structural and architectural openings to assure proper fit. Securely fasten louver to internal structural members to withstand a force of 25 lb/sf plus a safety factor of 3.0.

G. Instrumentation: Install duct thermometers and filter gauges so they are easily readable from the operator level.

3.3 FLUES AND VENTS FOR FUEL-FIRED EQUIPMENT

A. General: Install per the drawings and these specifications, manufacturer’s instructions, the terms of the vent’s UL Listing, the UMC and NFPA-211.

1. Use the same type vent for the entire system from the equipment connection to the termination outside. Provide all fittings, transitions, adapters, supports, storm collars, etc.

2. Install per the venting requirements of the appliance manufacturer. Comply with clearances per UL Listing. Minimize offsets and resistance to flow. System shall develop a positive flow adequate to remove products of combustion to outside. Do not run any portion of the vent system through any supply or return air duct or plenum. Do not connect the vent from any Category I or II (non-positive pressure) appliance with any Category III or IV (positive pressure) appliance. Do not install any manually operated damper at any point in vent system.

3. Properly support the system and make provisions for thermal expansion. Install so as to prevent leakage of flue gases into the building. Provide drain connections where condensate is likely to accumulate, and pipe to spill over floor drain.

4. Provide ventilated thimbles where vents pass through walls, floors and roof. Paint all galvanized or aluminized steel parts exposed to the weather with one coat of corrosion and heat-resistant
primer, and one coat of heat resistant paint.

5. Terminate low heat appliances as indicated on the drawings, but not less than:
 a. 3 ft above the highest point where the vent passes the roof.
 b. 2 ft above any portion of a building within a horizontal distance of 10 ft.
 c. 3 ft above any forced air inlet located within 10 ft.

B. Type B: If a draft damper is supplied with the appliance for installation in the flue, install it per manufacturer’s instructions. If appliance is listed for use with a draft hood but is not supplied with one, provide a properly sized barometric draft regulator immediately in the vent outlet, and install per manufacturer’s recommendations. Pitch vent up minimum 1/4-inch per foot. Join sections per manufacturer’s recommendations using sheet metal screws or proprietary closure system of a UL Listed venting system. Provide vent cap.

C. Type III and IV: Install per the drawings and these specifications, per manufacturer’s instructions, per the terms of the vent’s UL listing, and per NFPA-211.

3.4 DAMPERS FOR FIRE AND SMOKE CONTROL

A. Select FDs, SMDs and FSDs as appropriate to the application. Dampers may be rectangular or round, and single-section or multi-section as required, but shall not be less than the duct sizes indicated on the drawings nor larger than the maximum sizes per the UL listing for a given style of damper. Provide transitions and sleeves as required.

1. FSDs may be used where SMDs are indicated provided they meet the required ratings of the indicated SMDs and provided the FSDs are installed in accordance with their listing.

B. Install dampers in accordance with their listing. Terminate acoustic lining at dampers as necessary to ensure proper damper operation. Install actuators and access doors on the side of the duct unless space conditions preclude this. Provide adequate clearance for proper operation, and minimum 36-inch clearance for servicing actuator.

1. When space conditions preclude installing actuators on the side, such components may be installed on the top or bottom of the duct provided good access to these components is maintained.
2. When size requires the use of multiple dampers, provide framing to ensure the dampers remain in place.
3. Provide a duct access door at each FD, SMD and FSD for inspection and maintenance. Provide minimum 1/2-inch high label, “SMOKE DAMPER,” “FIRE DAMPER,” or “FIRE/SMOKE DAMPER.”

C. Test all SMDs and FSDs after the system is installed to ensure proper operation based on both smoke and fire signals. Advise Owner minimum 2 weeks in advance and invite him to observe these tests. Submit a written report with a table which identifies each such damper (along with plans which indicate each such damper); gives its size, type and model number; the date on which it was tested; the test results; and places for the initials of the person performing test for the contractor and the person witnessing test for owner. Should any dampers fail to operate properly, service them and demonstrate proper operation. Reset all dampers when the testing is complete.

3.5 FILTERS AND FILTER GAUGES

A. Provide one set of MERV-7 temporary filters until testing and balancing is complete. Then immediately before the system is turned over to the Owner at the completion of the project, remove these filters and provide the specified filters.
3.6 TERMINAL UNITS
 A. Install terminal units so that controls and piping components are readily accessible for normal service and maintenance. Provide minimum 3 ft clear in front of control panels.

3.7 GRILLES REGISTERS AND DIFFUSERS
 A. Install grilles, registers & diffusers (GRDs) square with building construction. Mount sidewall GRDs minimum, 3-inches above floor level. If GRDs have provisions to adjust the direction of air flow, submit a written recommendation regarding the best direction for air flows, obtain written approval from the Owner’s Representative, and adjust GRDs accordingly.
 B. Verify frame types with architectural RCPs prior to ordering GRDs.

3.8 FANS
 A.

3.9 COILS
 A.

3.10 AIR HANDLING UNITS AND AIR CONDITIONING UNITS
 A.

3.11 CLOSEOUT ISSUES
 A. Leakage Testing
 1. Pressure test not less than 25% of the installed ductwork of each system rated at 3 in wg or more, either positive or negative pressure. Advise Owner’s Representative when systems will be ready for testing. For large systems separate tests may be made on different sections. The Owner’s representative will designate the sections to be tested, but not more than 24 hours in advance of test. Cap ends of ducts as required and provide equipment as required for testing.
 2. Measure duct leakage per the SMACNA HVAC Duct Leakage Test manual. Leakage shall not exceed the following:

 \[L_{\text{max}} = C_L P^{0.65} \]

 where
 \(L_{\text{max}} \) = maximum permitted leakage, cfm/100 sf of duct surface area
 \(C_L \) = Duct leakage class (cfm/100 sf at 1-inch wg)
 = 6 for rectangular sheet metal, rectangular fiberglass, and round flexible ducts
 = 3 for round and flat oval sheet metal or fiberglass ducts
 \(P \) = Test pressure. Test pressure shall match system pressure class.
 3. If sample is defective, the contractor shall repair or modify the defective section and re-test it to demonstrate compliance. In addition, for each section which fails its original pressure test, the Owner’s Representative will designate an additional ductwork section of similar size, for the Contractor to test. This section will be in addition to 25% area originally planned to be tested.
 4. Complete all leakage testing and repairs prior to concealing ducts.
 5. Submit a test report that documents the test procedure and results. Include:
a. Test equipment – model numbers, technical data, calibration data, etc.
b. Drawings showing the extent of the systems tested.
c. Test results.
d. Dates, witnesses, and signatures of witnesses.

B. Testing and Balancing: Test and balance the complete air tempering system as specified in Section 23 0593. It is anticipated that the TAB effort will identify some system deficiencies. Work in a cooperative manner to identify the cause of these deficiencies. Where deficiencies are due to defects in installation, or workmanship, repair as required and re-test to demonstrate proper performance.

C. Cleaning

1. All ducts, coils, housing, registers, grilles, fans, etc., shall be clean when installed and shall be kept clean until the system is completed. As the various parts of the system are installed, they shall be wiped or blown clean and openings taped dust-tight with heavy paper or cardboard until the system is completed and ready for testing. At that time all covers and protective wrappings shall be removed. Where one has been torn or previously removed, the duct, coil, register, etc., shall be carefully cleaned of any dirt or dust that has entered the opening.

END OF SECTION
SECTION 237413 - PACKAGED OUTDOOR AIR HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes packaged, outdoor, central-station air-handling unit (rooftop make-up air unit) with the following components and accessories:

1. Direct-expansion cooling.
2. Gas furnace.
3. Economizer outdoor, filter, and return-air damper section.
4. Exhaust air plenum and filter.
5. Integral, space temperature controls.
6. Roof curbs.

1.2 DEFINITIONS

A. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

B. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

C. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

D. Supply-Air Fan: The fan providing supply-air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

E. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

1.3 SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Field quality-control test reports.

D. Operation and maintenance data.

E. Warranty.
1.4 QUALITY ASSURANCE

A. ARI Compliance:

1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs.
2. Comply with ARI 270 for testing and rating sound performance for RTUs.

B. ASHRAE Compliance:

1. Comply with ASHRAE 15 for refrigerant system safety.
2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
3. Comply with applicable requirements in ASHRAE 62.1-2004, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.

E. UL Compliance: Comply with UL 1995.

F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.5 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to replace components of RTUs that fails in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer’s standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer’s standard, but not less than 15 years from date of Substantial Completion.
3. Warranty Period for Solid-State Ignition Modules: Manufacturer’s standard, but not less than three years from date of Substantial Completion.
4. Warranty Period for Control Boards: Manufacturer’s standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
C. Basis-of-Design Product: Subject to compliance with requirements, provide Carrier or a comparable product by one of the following:

1. Trane
2. York
3. Daikin Applied
4. Carrier

2.2 CASING

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

1. Exterior Casing Thickness: 0.0626 inch thick.

C. Inner Casing Fabrication Requirements:

1. Inside Casing: Galvanized steel, 0.028 inch, perforated 40 percent free area.
2. Exhaust plenum: Galvanized steel, 0.028 inch, perforated and factory applied acid resistance coating.

D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.

1. Materials: ASTM C 1071, Type I.
2. Thickness: 1 inch.
3. Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.
4. Liner Adhesive: Comply with ASTM C 916, Type I.

1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
2. Drain Connections: Threaded nipple, both sides of drain pan.
3. Pan-Top Surface Coating: Corrosion-resistant compound.

F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

2.3 FANS

A. Direct-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.

B. Belt-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
C. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.

D. Exhaust-Air Fan: Centrifugal, belt-drive, with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Heavy gauge steel and factory applied acid resistance coating.

E. Fan Motor: Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

2.4 COILS

A. Supply-Air Refrigerant Coil:
 1. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.

B. Outdoor-Air Refrigerant Coil:
 1. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coils from contacting steel coil frame or condensate pan.

2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: One or two for large units.

B. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

C. Refrigeration Specialties:
 1. Refrigerant: R-407C or R-410A.
 2. Expansion valve with replaceable thermostatic element.
 3. Refrigerant filter/dryer.
 5. Automatic-reset low-pressure safety switch.
 8. Brass service valves installed in compressor suction and liquid lines.

2.6 AIR FILTRATION

A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 1. Pleated: Minimum 60 percent arrestance for supply air and exhaust air.
2.7 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
 1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Corrosion resistant progressive tubular aluminized steel heat exchanger throughout.
 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
 3. High-Altitude Model: For Project elevations more than 6500 feet above sea level.

C. Venting: Gravity vented.

D. Safety Controls:
 1. Gas Control Valve: Two stage.

2.8 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for 0 to 100 percent outdoor air for air side economizer, with motorized damper filter.

B. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
 1. Damper Motor: Modulating with adjustable minimum position.
 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1-2004, with bird screen and hood.

2.9 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to rooftop unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

B. Provide dedicated power for exhaust fan with unit-mounted disconnect switch accessible from outside unit.

2.10 CONTROLS

A. RTU Controls:
 1. Factory wired and tested with all necessary safety controls and all controls for fully automatic operation.
 2. Provide Factory installed Stand-alone controls with 7-day programmable thermostat (see plans for T-Stat locations.
 3. Refer to section 23 0900 Automatic Temperature Controls for conduit, wiring and other requirements.

2.11 ACCESSORIES

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton
A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required.

B. Coil guards of painted, galvanized-steel wire.

C. Hail guards of galvanized steel, painted to match casing.

2.12 ROOF CURBS

A. Roof curbs: Refer to drawings and sections.

B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 1 inch.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.

C. Curb Height: 24 inches.

2.13 CAPACITIES AND CHARACTERISTICS

A. Supply and exhaust fans: See Equipment Schedule.

B. Heating and cooling: See Equipment Schedule.

C. Sound Power: Radiated from condenser casing.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to ARI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07 Section "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

C. Install condensate drain, minimum connection size, with trap and indirect connection. See Plumbing drawings.

D. Install piping adjacent to RTUs to allow service and maintenance.
 1. Gas Piping: Comply with applicable requirements in Division 23 Section "Facility Natural-Gas Piping" Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

E. Duct installation requirements are specified in other Division 23 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Connect supply ducts to RTUs with flexible duct connectors specified in Division 23 Section.
 3. Install return-air duct continuously through roof structure.

3.2 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.

C. Tests and Inspections:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

3.3 CLEANING AND ADJUSTING
A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

END OF SECTION
SECTION 26 0500 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General Conditions, Supplemental General Conditions, and Division 1 Specification Sections apply to all Sections of Division 26.

B. The requirements listed under General Conditions and Supplementary Conditions and the General Requirements are applicable to this section and all subsequent sections of Division 26 and form a part of the contract.

C. Division 1, Coordination, for additional requirements.

D. Division 1, Cutting and Patching, for additional requirements.

E. Division 1, Submittals, for additional requirements.

F. Division 7, Firestopping, for additional requirements.

G. Division 7, Joint Sealants, for additional requirements.

H. Division 9, Painting, for additional requirements.

I. Division 31, Site Work for Trenching, Backfilling and Compaction requirements.

1.2 SUMMARY

A. This Section includes general administrative and procedural requirements of electrical installations. The following administrative and procedural requirements are included in this Section to expand the requirements specified in Division 1:

1. Submittals
2. Coordination Drawings
3. Record Documents
4. Maintenance Manuals
5. Rough-Ins
6. Electrical Installations
7. Cutting and Patching

1.3 ELECTRICAL DIVISION INDEX

Section 26 0500 Common Work Results for Electrical
Section 26 0519 Low Voltage Electrical Power Conductors and Cables
Section 26 0526 Grounding and Bonding for Electrical Systems
Section 26 0529 Hangers and Supports for Electrical Systems
Section 26 0533 Raceway and Boxes for Electrical Systems
Section 26 0553 Identification for Electrical Systems
Section 26 0923 Lighting Control Devices
Section 26 2416 Panelboards
Section 26 2726 Wiring Devices
Section 26 2813 Fuses
Section 26 2816 Enclosed Switches and Circuit Breakers
Section 26 3213 Diesel Engine Generators
Section 26 3600 Transfer Switches
Section 26 4313 Surge Protection Devices for Low Voltage Electrical Power Circuits
Section 26 5100 Interior Lighting

1.4 CODES AND PERMITS

A. Perform electrical work in strict accordance with the applicable provisions of the National Electrical Code, Latest Edition; National Electric Safety Code, Latest Edition, the Uniform International Building Code, Latest Edition as adopted and interpreted by the State of New Mexico, City of Albuquerque, and the National Fire Protection Association (NFPA Regulations), current adopted edition. Provide all materials and labor necessary to comply with rules, regulations and ordinances. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern. The Contractor shall hold and save the Engineer free and harmless from liability of any nature or kind arising from his failure to comply with codes and ordinances.

B. Secure and pay for all permits necessary for performance of the work. Pay for all utility connections unless otherwise specified herein.

C. The following lists applicable codes and standards that, as a minimum, shall be followed.

 Applicable county and state electrical codes, laws and ordinances.

 National Electrical Manufacturer's Association Standards

 National Electrical Code

 National Electrical Safety Code

 Underwriters Laboratories, Inc. Standards

 American National Standards Institute

 American Society for Testing Materials Standards

 Standards and requirements of local utility companies

 National Fire Protection Association Standards
Institute of Electrical and Electronics Engineers Standards
Insulated Cable Engineers Association
Occupational Safety and Health Act
Uniform Fire Code
Americans with Disabilities Act
Commercial and Industrial Insulation Standards (MICA)

1.5 RECORD DRAWINGS
A. Maintain a complete and accurate set of marked up blue-line prints showing information on the installed location and arrangement of all electrical work, and in particular, where changes were made during construction. Use red color to indicate additions or corrections to prints, green color to indicate deletions, and yellow color to indicate items were installed as shown. Keep record drawings accurate and up-to-date throughout the construction period. Record drawings may be reviewed and checked by the Architect, Owner’s Representative and Contracting Officer during the construction and in conjunction with review and approval of monthly pay requests. Include copies of all addenda, RFI’s, bulletins, and change orders neatly taped or attached to record drawing set. Transmit drawings to the Architect at the conclusion of the project for delivery to the Owner’s Representative.

1.6 QUALIFICATIONS
A. All electricians shall be skilled in their respective trade.

1.7 SUBSTITUTIONS
A. Identification of Division 26 equipment, fixtures, and materials listed within this Specification and in the Equipment Schedules on the drawings, which are identified by manufacturer’s name, trade name, and/or model numbers are generally not meant to give preference to any manufacturer, but are provided to establish the design requirements and standards.

B. Equipment submitted for substitution must fit the space conditions leaving adequate room for maintenance around all equipment. A minimum of 36 inches, or more if required by Code, must be maintained clear in front of all electrical panels, starters, gutters, or other electrical apparatus. Submit drawings showing the layout, size and exact method of interconnection of conduit, wiring and controls, which shall conform to the manufacturer’s recommendations and these specifications. The scale of these drawings shall be scale of Contract Drawings. The Contractor shall bear the excess costs, by any and all crafts, of fitting the equipment into the space and the system designated. Where additional labor or material is required to permit equipment submitted for substitution to function in an approved manner, this shall be furnished and installed by the Contractor without additional cost to the Owner.

C. Equipment submitted for substitution shall be approved in writing by the Owner or his representative and shall be accompanied by the following:

1. A sample of each item submitted for substitution shall accompany the submittal.
2. Provide a unit price quotation with each item intended for substitution. Include a unit price for the specified item and a unit price for the intended substitute item. Provide a total (per item) of the differential payback to the Owner should the intended substitute item be approved as equivalent to that which is specified.
3. Reimburse the Owner for the Architect/Engineer’s additional services required to review and process substitutions.

D. Substitutions shall be approved in writing by the Owner or his representatives. The determination of the Owner shall be final.

1.8 PRIOR APPROVAL
A. Requirements for prior approval in Division 1 or other sections of this specification do not override the requirements of this section.

1.9 HAZARDOUS CONDITIONS
A. Protruding metal (bolts, steel angles, etc.) potentially hazardous to maintenance and operation personnel, shall be cut back and/or protected to reduce the risk of injury.

1.10 DEFINITIONS
A. Definitions of terms will be found in the National Electrical Code.
B. Whenever a term is used in this Specification which is defined in the Code, the definition given will govern its meaning in this Specification.
C. Whenever a technical term is used which does not appear in the Code, the definition to govern its meaning in these Specifications will be found in the Standard Dictionary of Electrical and Electronic Terms, published by the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, New Jersey 08855-1331.
D. "Provide" means furnish, install, connect and test unless otherwise noted.

1.11 SUBMITTALS
A. The Contractor shall submit submittal brochures of equipment, fixtures and materials to be furnished under Division 26.
B. Unauthorized Substitutions: If substitute materials, equipment or systems are installed without prior review or are installed in a manner which is not in conformance with the requirement of this Specification and for which the Contractor has not received a written review, removal of the unauthorized materials and installation of those indicated or specified shall be provided at no change in contract amount.
C. Install equipment in accordance with the manufacturer’s recommendations. Provide accessories and components for optimum operation as recommended by the manufacturer.
D. Costs for the preparation, correction, delivery, and return of the submittals shall be borne by the Contractor.
E. Complete data must be furnished showing performance, quality and dimensions. No equipment or materials shall be purchased prior to receiving written notification from the Architect/Engineer that submittals have been reviewed and marked either "NO EXCEPTIONS TAKEN" or "EXCEPTIONS AS NOTED." Submittals returned marked "EXCEPTIONS AS NOTED" do not require resubmittal provided that the Contractor agrees to comply with all exceptions noted in the submittal, and so states in a letter to the Architect/Engineer.
F. Review of Submittals: Submittals will be reviewed with reasonable promptness, but only for conformance with the design concept of the Project and for conformance with the information indicated on the Drawings and stated in the Specifications. Review of a separate item as such will not indicate review of the assembly in which the item functions. Review of submittals shall not relieve the Contractor of responsibility for any deviation from the requirements of the Contract Documents, nor for errors or omissions in the submittals; or for the accuracy of dimensions and quantities, the adequacy of connections, and the proper and acceptable fitting, execution, functioning and completion of the work. Review shall not relieve the Contractor of responsibility for the equipment fitting within the allotted space shown on the drawings with all clearances required for equipment operation, service and maintenance including a minimum of 3 feet clear in front of all electrical equipment and panels as defined by the National Electrical Code. Any relocation of mechanical and/or electrical equipment, materials and systems required to comply with minimum clearances shall be provided by the Contractor without additional cost under the Contract.

G. Shop Drawings: Unless the following information is included, shop drawings will be returned unchecked:

1. Cover sheet for each submittal, listing equipment, products, and materials, and referencing data and sections in Specifications and drawings. Clearly reference project name and provide space for a review stamp.
2. Cover sheet shall clearly identify deviations from specifications, and justification.
3. Include all related equipment in a single submittal to allow complete review. Similar equipment may be submitted under a common cover sheet.
4. Size, dimensions, and weight of equipment.
5. Equipment performance under specified conditions, not a copy of scheduled data on drawings.
6. Indicate actual equipment proposed, where data sheets indicate more than one (1) device or equipment.

H. Use of substitutions reviewed and checked by the Engineer does not relieve the Contractor from compliance with the Contract Documents. Contractor shall bear all extra expense resulting from the use of any substitutions where substitutions affect adjoining or related work required in this Division or other Divisions of this Specification.

I. If Contractor substitutes equipment for that drawn to scale on the drawings, he shall prepare a 1/4" = 1'-0" installation drawing for each equipment room where a substitution is made, using dimensions of substituted equipment, and including piping, and electrical equipment requirements, to verify that equipment will fit space with adequate clearances for maintenance. This 1/4" = 1'-0" fabrication drawing shall be submitted, for review by the Architect, with the shop drawing submittals of the substituted. Failure to comply with this requirement will result in the shop drawings being returned unchecked.

J. Submittals and one (1) resubmittal will be reviewed by the Architect/Engineer. If the Contractor fails to provide the required data with his second submittal, he will be charged for the third and subsequent reviews.

K. See Division 1 for additional submission requirements.

1.12 MAINTENANCE MANUALS

A. Prepare maintenance manuals in accordance with Division 1, Section 01 78 23 - PROJECT CLOSEOUT. In addition to the requirements specified in Division 1, include the following information for equipment items:

1. Manufacturer’s printed operating procedures to include start-up, break-in, and routine and normal operating instructions; regulation, control, stopping, shutdown, and emergency
instructions; and summer and winter operating instructions.

2. Maintenance procedures for routine preventative maintenance and troubleshooting; disassembly, repair, and reassembly; aligning and adjusting instructions.

1.13 COORDINATION DRAWINGS

A. Prepare coordination drawings in accordance with Division 1, Section "PROJECT COORDINATION", to a scale of 1/4" = 1'-0" or larger; detailing major elements, components, and systems of electrical equipment and materials in relationship with other systems, installations, and building components. Indicate locations where space is limited for installation and access and where sequencing and coordination of installations are of importance to the efficient flow of the Work, including (but not necessarily limited to) the following:

1. Indicate the proposed locations of major raceway systems, equipment, and materials. Include the following:
 a. Clearances for servicing equipment, including space for equipment disassembly required for periodic maintenance.
 b. Exterior wall and foundation penetrations.
 c. Fire-rated wall and floor penetrations.
 d. Equipment connections and support details.
 e. Sizes and location of required concrete pads and bases.

2. Indicate scheduling, sequencing, movement, and positioning of large equipment into the building during construction.

3. Prepare floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.

4. Prepare reflected ceiling plans to coordinate and integrate installations, air outlets and inlets, light fixtures, communications systems components, sprinklers, and other ceiling-mounted devices.

1.14 USE OF CADD FILES

A. Under certain conditions, the Contractor will be permitted the use of the Engineer's CADD files for documentation of as-builts, submittals, or coordination drawings.

B. The Engineer shall be compensated for the time required to format the CADD files for delivery to the Contractor. Such work may include removal of title blocks, professional seals, calculations, proprietary information, etc.

C. The Contractor shall complete the enclosed License, Indemnity and Warranty Agreement, complete with contractor’s name, address, and Contractor's Representative signature prior to request for CADD file usage.

1.15 DRAWINGS AND SPECIFICATIONS

A. Electrical drawings are diagrammatic, but shall be followed as closely as actual construction and work of the other sections shall permit. Size and location of equipment is drawn to scale wherever possible. Do not scale from electrical drawings.

B. Drawings and specifications are for the assistance and guidance of the Contractor. Exact locations, distances, and levels will be governed by the building. The Contractor shall make use of data in all the
Contract Documents to verify information at the building site.

C. In any case where there appears to be a conflict between that which is shown on the electrical drawings, and that shown in any other part of the Contract Documents, the Contractor shall notify and secure directions from the Architect.

D. Drawings and specifications are intended to complement each other. Where a conflict exists between the requirements of the drawings and/or the specifications, request clarification. Do not proceed with work without direction.

E. The Architect shall interpret the drawings and the specifications. The Architect’s interpretation as to the true intent and meaning thereof and the quality, quantity, and sufficiency of the materials and workmanship furnished there under shall be accepted as final and conclusive.

F. In the case of conflicts not clarified prior to the bidding deadline, use the most costly alternative (better quality, greater quantity, and larger size) in preparing the bid. A clarification will be issued to the successful bidder as soon as feasible after the award and, if appropriate, a deductive change order will be issued.

G. Where items are specified in the singular, this division shall provide the quantity as shown on drawings plus any spares or extras indicated on the drawings or in the specifications.

H. Investigate structural and finish conditions and arrange work accordingly. Provide all fittings, equipment, and accessories required for actual conditions.

1.16 SIMILAR MATERIALS

A. All items of a similar type shall be products of the same manufacturer.

B. Contractor shall coordinate among suppliers of various equipment to assure that similar equipment type is product of the same manufacturer.

C. Examples of similar equipment types include but are not limited to:

1. Power Circuit Breakers
2. Enclosed Case Circuit Breakers
3. Batteries
4. UPS
5. TVSS
6. Engine-Generators
7. Motor Starters
8. Transformers
9. Panelboards
10. Disconnects
11. Fuses
12. Transfer Switch
13. Computer Power Distribution Units

1.17 DELIVERY, STORAGE AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed for identification.
1.18 GUARANTEE-WARRANTY

A. See Division 1 for warranties.

PART 2 - PRODUCTS

2.1 QUALITY OF MATERIALS

A. All equipment and materials shall be new, and shall be the standard product of manufacturers regularly engaged in the production of electrical equipment, and shall be the manufacturer's latest design. Specific equipment, shown in schedules on drawings and specified herein, is to set forth a standard of quality and operation.

B. Hazardous or Environmentally Damaging Materials: Products shall not contain asbestos, mercury, PCBs, or other materials harmful to people or the environment.

2.2 ALTITUDE RATINGS

A. Unless otherwise noted, all specified equipment capacities are for an altitude of this project site. Contractor will verify altitude of site prior to ordering any equipment. Adjustments to manufacturer's ratings must be made accordingly.

2.3 EQUIPMENT REQUIREMENTS

A. Approved Equipment and Conductors: ALL equipment and conductors shall be listed and labeled by a nationally recognized testing laboratory (NRTL). The NRTL shall be listed by the federal occupational safety and health administration. Conformance with the State of New Mexico Electrical Code article 110.2 is required for ALL equipment and conductors.

PART 3 - EXECUTION

3.1 COOPERATION WITH OTHER TRADES

A. Coordinate all work so that the construction operations can proceed without harm to the Owner from interference, delay, or absence of coordination. The Contractor shall be responsible for the size and accuracy of all openings.

3.2 DRAWINGS

A. The electrical drawings show the general arrangement of all lighting, power, special systems, equipment, etc., and shall be followed as closely as actual building construction and work of other trades will permit. Whenever discrepancies occur between plans and specifications, the most stringent shall govern. All Contract Documents shall be considered as part of the work. Coordinate with architectural, mechanical, and structural drawings. Because of the small scale of the electrical drawings, it is not possible to indicate all offsets, fittings and accessories which may be required. Provide all fittings, boxes, and accessories as may be required to meet actual conditions. Should conditions necessitate a rearrangement of equipment, such departures and the reasons therefore, shall be submitted by the Contractor for review in the form of detailed drawings showing the proposed changes. No changes shall be made without the prior written approval. All changes shall be marked on record drawings.

B. Should any doubt or question arise in respect to the true meaning of the drawings or specifications, the question shall be submitted in writing.

C. Installation of all equipment shall be arranged to provide all clearances required for equipment.
operation, service, and maintenance, including minimum clearance, as defined by the National Electrical Code (NEC).

D. The Contractor’s attention is directed to the unique architectural design features and consideration associated with this facility which will require significantly greater levels of coordination and cooperation for the work furnished and installed under Division 26 with the associated architectural, structural, and mechanical work than is normally necessary for a more typical facility.

E. The installation of all concealed electrical systems shall be carefully arranged to fit within the available space without interference with adjacent structural and mechanical systems.

3.3 ELECTRICAL INSTALLATIONS

A. General: Sequence, coordinate, and integrate the various elements of electrical system, materials, and equipment. Comply with the following requirements:

1. Coordinate electrical systems, equipment, and materials installation with all other building components.
2. Verify all dimensions by field measurements.
3. Arrange for chases, slots, and openings in all other building components during progress of construction, to allow for electrical installations.
4. Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components as they are constructed.
5. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum clearance possible.
7. Coordinate connection of electrical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
8. Branch circuits in offices and computer areas to have an individual neutral for each phase.
9. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Architect.
10. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components.
11. Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. As much as practical, connect equipment for ease of disconnecting, with minimum of interference with other installations.
12. Install access panel or doors where units are concealed behind finished surfaces.
13. Install systems, materials, and equipment giving right-of-way priority to systems requiring installation at a specified slope.

3.4 FIELD MEASUREMENTS

A. No extra compensation shall be claimed or allowed due to differences between actual dimensions, including dimensions of equipment, fixtures and materials furnished, and those indicated on the drawings. Contractor shall examine adjoining work, and shall report any work which must be corrected. Review of submittal data in accordance with paragraph "Submittals" shall in no manner relieve the Contractor of responsibility for the proper installation of the electrical work within the available space. Installation of equipment and systems within the building space shall be carefully coordinated by the
3.5 EQUIPMENT SUPPORT

A. Provide support for equipment to the building structure. Provide all necessary structures, inserts, sleeves, firestops and hanging devices for installation of equipment. Coordinate installation of devices. Verify with the Architect that the devices and supports are adequate as intended and do not overload the building’s structural components in any way.

3.6 PAINTING

A. All finish painting of electrical systems and equipment will be under "Painting," unless equipment is hereinafter specified to be painted.

B. All equipment shall be provided with factory applied standard finish, unless otherwise specified.

C. Touch-Up: If the factory finish on any equipment is damaged in shipment or during construction of the building, the equipment shall be refinished to the satisfaction of the Architect, Owner’s Representative, and Building Manager.

3.7 PROTECTION OF MATERIALS AND EQUIPMENT

A. The Contractor shall be responsible for the protection of all work, materials and equipment furnished and installed under this section of the specifications, whether incorporated in the building or not.

B. All items of electrical equipment shall be stored in a protected weatherproof enclosure prior to installation within the building, or shall be otherwise protected from the weather in a suitable manner approved by the Architect, and Owner’s Representative.

C. The Contractor shall provide protection for all work and shall be responsible for all damage done to property, equipment and materials. Storage of materials within the building shall be approved by the Architect and Owner’s Representative prior to such storage.

D. Conduit openings shall be closed with caps or plugs, or covered to prevent lodgment of dirt or trash during the course of installation. At the completion of the work, fixtures, equipment and materials shall be cleaned and polished thoroughly and delivered in a condition satisfactory to the Architect, and Owner’s Representative.

3.8 EXCAVATION

A. Provide all excavation, trenching and backfilling required.

B. Slope sides of excavations to comply with codes and ordinances. Shore and brace as required for stability of excavation.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGE

A. Cut, fit, and place miscellaneous metal fabrications accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS "Structural Welding Code."
3.10 ERECTION OF WOOD SUPPORTS AND ANCHORAGE

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorage accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Select fastener sizes that will not penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.11 APPLICATION OF JOINT SEALERS

A. General: Comply with joint sealer manufacturer’s printed application instructions applicable to products and applications indicated, except where more stringent requirements apply.

B. Immediately after sealant application and prior to time shrinking or curing begins, tool sealants to form smooth, uniform beads; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint. Remove excess sealants from surfaces adjacent to joint. Do not use tooling agents that discolor sealants or adjacent surfaces or are not approved by sealant manufacturer.

C. Firestopping Sealant: Provide sealant, including forming, packing, and other accessory materials, to fill openings around electrical services penetrating floors and walls, to provide fire-stops with fire-resistance ratings indicated for floor or wall assembly in which penetration occurs. Comply with installation requirements established by testing and inspecting agency.

3.12 INSTALLATION OF ACCESS DOORS

A. Set frames accurately in position and securely attached to supports, with face panels plumb and level in relation to adjacent finish surfaces.

B. Adjust hardware and panels after installation for proper operation.

3.13 CUTTING AND PATCHING

A. Perform cutting and patching in accordance with Division 1, Section "CUTTING AND PATCHING." In addition to the requirements specified in Division 1, the following requirements apply:

1. Perform cutting, fitting, and patching of electrical equipment and materials required to:

 a. Remove and replace defective Work.
 b. Remove and replace Work not conforming to requirements of the Contract Documents.
 c. Remove samples of installed Work as specified for testing.
 d. Install equipment and materials in existing structures.
 e. Upon written instructions from the Contracting Officer, uncover and restore Work to provide for Contracting Officer observation of concealed Work.

2. Cut, remove, and legally dispose of selected electrical equipment, components, and materials as indicated, including but not limited to removal of electrical items indicated to be removed and items made obsolete by the new Work.
3. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
4. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.
5. During cutting and patching operations, protect adjacent installations.

3.14 MANUFACTURER’S INSTRUCTIONS

A. All equipment shall be installed in strict accordance with recommendations of the manufacturer. If such recommendations conflict with plans and specifications, the Contractor shall submit such conflicts to the Architect, and Owner’s Representative who shall make such compromises as he deems necessary and desirable.

3.15 OWNER FURNISHED EQUIPMENT

A. Some equipment has either been pre-purchased or is in the process of being pre-purchased by the Owner. It has been necessary to take this approach in order to meet the construction deadlines of the project. The pre-purchased equipment will be indicated on the drawings.

B. Included in Work Scope:

1. Follow and expedite the delivery of each piece of equipment to assure the equipment delivery stays on schedule. Notify the Owner of any problems or delays.
2. Receive, unload, uncrate, and install each item of pre-purchased and Owner furnished equipment.
3. Confirm that each item has been received complete and as specified. Notify the Owner and the manufacturer’s representative in writing of any deficiencies or damage.
4. Coordinate with the manufacturer’s representative on start-up and provide factory personnel and provide all necessary personnel to assist Owner’s operating personnel and/or manufacturer’s service personnel in start-up and commissioning.
5. Provide all items not listed as pre-purchased.

C. Submittals, installation instructions, and warranty provisions for pre-purchased equipment will be furnished to the Contractor by the Owner.

3.16 CONCRETE BASES AND HOUSEKEEPING PADS

A. Install concrete bases and housekeeping pads under all freestanding electrical equipment unless otherwise noted.

B. Contractor shall be responsible for the accurate dimensions of all pads and bases and shall furnish and install all anchor bolts, etc. Coordinate weight of concrete bases and housekeeping pads with the structural engineer.

C. All concrete bases and housekeeping pads shall conform to the requirements specified under Division 3, Concrete, portions of these specifications. Pad foundations shall be 4” high minimum, unless otherwise indicated on the drawings. Chamfer edges shall be 1”. Faces shall be free of voids and rubbed smooth with Carborundum block after stripping forms. Tops shall be level. Provide dowel rods or other required material in floor for lateral stability and anchorage.
3.17 TESTS

A. All tests shall be conducted in the presence of the designated and authorized Owner’s Representative. The Contractor shall notify the Architect, and Owner’s Representative two weeks in advance of all tests. The Contractor shall furnish all necessary equipment, materials, and labor to perform the required tests.

3.18 OPERATION AND MAINTENANCE INSTRUCTIONS

A. The Contractor shall furnish the complete operating and maintenance instructions covering all units of electrical equipment herein specified together with parts lists. Furnish four (4) copies of all the literature; each shall be suitably bound in loose leaf book form.

B. Operating and maintenance manuals as required herein shall be submitted for review not less than two (2) weeks prior to the date scheduled for the Contractor to provide Operating and Maintenance Instructions to the Owner as specified herein.

C. Upon completion of all work and all tests, Contractor shall furnish the necessary skilled labor and helpers for operating the electrical systems and equipment for a period of three (3) days of eight (8) hours each. During this period, the Contractor shall instruct the Owner or his representative in the operations, adjustment and maintenance of all equipment furnished. Contractor shall provide at least two weeks notice in advance of this period, with a written schedule of each training session, the subject of the session, the Contractors’ representatives who plan to attend the session, and the time for each session.

D. The Contractor shall video tape the instruction and training sessions using a VHS or DVD camcorder, and at the completion and acceptance (by Owner and Architect) of the training sessions, the Contractor shall submit (2) copies of the video tape.

3.19 CERTIFICATIONS

A. Before receiving final payment, certify in writing that all equipment furnished and all work done is in compliance with all applicable codes mentioned in these specifications. Submit certifications and acceptance certificates to the Architect, and Owner’s Representative including proof of delivery of O&M manuals, spare parts required, and equipment warranties which shall be bound with O&M manuals.

3.20 INTERRUPTING SERVICES

A. Contractor shall coordinate the installation of all work within the building in order to minimize interference with the operation of existing building electrical telephone, fire alarm, and utility systems during construction. Connections to existing systems requiring the interruption of service within the building shall be carefully coordinated with the Owner to minimize system downtimes. Requests for the interruption of existing services shall be submitted in writing a minimum of two (2) weeks before the scheduled date. Absolutely no interruption of the existing services will be permitted without the written review.

3.21 OPERATION PRIOR TO ACCEPTANCE

A. Operation of equipment and systems installed by the Contractor for the benefit of the Owner prior to substantial completion will be allowed providing a written agreement between the Owner and the Contractor has established warranty and other responsibilities to the satisfaction of both parties.

B. Operation of equipment and systems installed by the Contractor, for the benefit of the Contractor, except for the purposes of testing and balancing will not be permitted without a written agreement between the Owner and the Contractor establishing warranty and other responsibilities.
3.22 SITE VISITS AND OBSERVATION OF CONSTRUCTION

A. The Architect/Engineer will make periodic visits to the project site at various stages of construction in order to observe the progress and quality of various aspects of the Contractor’s work, in order to determine in general if such work is proceeding in accordance with the Contract Documents. This observation by the Architect/Engineer however, shall in no way release the Contractor from his complete responsibility to supervise, direct, and control all construction work and activities, nor shall the Architect/Engineer have authority over, or a responsibility to means, methods, techniques, sequences, or procedures of construction provided by the Contractor or for safety precautions and programs, or for failure by the Contractor to comply with all law, regulations, and codes.

END OF SECTION
DIVISION 26 SUBSTITUTION REQUEST FORM (SRF)

TO: BRIDGERS & PAXTON CONSULTING ENGINEERS, INC.

PROJECT:

We hereby submit for your consideration the following product instead of the specified item for the above project:

Section: ___________ Page: ___________ Paragraph/Line: ___________ Specified Item: ___________

Proposed Substitution: ___________

Attach complete product description, drawings, photographs, performance and test data, and other information necessary for evaluation. Identify specific Model Numbers, finishes, options, etc.

1. Will changes be required to building design in order to properly install proposed substitutions?
 YES ☐ NO ☐
 If YES, explain: __

2. Will the undersigned pay for changes to the building design, including engineering and drawing costs, caused by requested substitutions? YES ☐ NO ☐

3. List differences between proposed substitutions and specified item.

 Specified Item | Proposed Substitution
 __ | __
 __ | __
 __ | __

4. Does substitution affect Drawing dimensions? YES ☐ NO ☐

5. What affect does substitution have on other trades? __

6. Does the manufacturer’s warranty for proposed substitution differ from that specified? YES ☐ NO ☐
 If YES, explain: __

7. Will substitution affect progress schedule? YES ☐ NO ☐
 If YES, explain: __

8. Will maintenance and service parts be locally available for substitution? YES ☐ NO ☐
 If YES, explain: __

9. Is substitution identical in appearance and function to specialized product? YES ☐ NO ☐

Submitting Firm: ___________________________ Date: ___________
Address: __
Signature: ___ Telephone: ____________________________

For Engineer’s Use Only
Accepted: ___________ Not Accepted: ___________ Received Too Late: ___________
By: ___________________________ Date: ___________
Remarks: ____________________________

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

COMMON WORK RESULTS FOR ELECTRICAL

260500 - 15
LICENSE AGREEMENT FOR CADD DATABASE OR BIM MODEL

PROJECT: ___

LICENSE GRANT: Contractor is granted use of the CADD Database or BIM Model (Database/Model) for the indicated project for the specific purpose of preparing submittal documents for this Project. No other use of the Database/Model is granted. Title to the Database/Model is not transferred to the Contractor. The Database/Model may be of value to the Contractor in preparing submittals, but use of the model does not relieve the contractor of the requirement to verify measurements in the field.

COPYING RESTRICTIONS: Contractor may copy the Database/Model in whole or in part, but only for backup and archival purposes or for use by the Contractor's Subcontractors. Contractor agrees to ensure that any entities that receive the Database/Model from Contractor, either in whole or in part, comply with the terms and conditions of this agreement. Contractor shall safeguard the Database/Model from falling into the hands of parties other than Subcontractors with a legitimate need for it.

WARRANTY: Bridgers & Paxton (B&P) offers this Database/Model without warranty and specifically without express or implied warranty of fitness. If Contractor chooses to use the Database/Model, then he does so at his own risk and without any liability or risk to B&P.

INDEMNITY: Contractor shall to the fullest extent permitted by law, defend, indemnify and hold harmless the Owner, Architect, B&P, their employees and agents from all claims, damages, losses, and attorney fees arising out of or resulting from the use of the Database/Model.

ACKNOWLEDGMENT: Contractor acknowledges that (s)he has read this Agreement, understands it, and agrees to be bound by its terms and conditions.

CONTRACTOR'S REPRESENTATIVE

Signature: _______________________________ Company Name: _______________________________

Name: _______________________________ Address 1: _______________________________

Title: _______________________________ Address 2: _______________________________

Date: _______________________________

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

COMMON WORK RESULTS FOR ELECTRICAL

260500 - 16
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 B. Related Requirements:
 1. Section 26 0529 "Hangers and Supports for Electrical Systems" for supports and anchors for fastening cable directly to building finishes.
 2. Section 26 0553 "Identification for Electrical Systems" for insulation color coding and wire cable markers.

1.3 DEFINITIONS
 A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Alcan Products Corporation; Alcan Cable Division.
2. Alpha Wire.
3. Belden Inc.
5. General Cable Technologies Corporation.

B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THW, Type THHN/THWN.

D. Multi-conductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC with ground wire where allowed to be used by Architect/Owner.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AFC Cable Systems, Inc.
2. Gardner Bender.
4. Ideal Industries, Inc.
5. Ilsco; a branch of Bardes Corporation.
6. NSi Industries LLC.
7. O-Z/Gedney; a brand of the EGS Electrical Group.
8. 3M; Electrical Markets Division.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; except VFC cable which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Not acceptable. All conductors in a raceway path.
C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN/THWN, single conductors in raceway.

D. Exposed Branch Circuits, Including in Crawlspace: Type THHN/THWN, single conductors in raceway.

E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN single conductors in raceway.

F. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, and strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 26 0533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 26 05 36 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 26 0553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 07 8413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors.
3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

D. Test and Inspection Reports: Prepare a written report to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:

 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:

 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.

B. Qualification Data: For testing agency and testing agency's field supervisor.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Instructions for periodic testing and inspection of grounding features at grounding connections for separately derived systems based on NFPA 70B.

 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 2) Include recommended testing intervals.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Burndy; Part of Hubbell Electrical Systems.
2. Dossert; AFL Telecommunications LLC.
3. ERICO International Corporation.
4. Fushi Copperweld Inc.
5. Galvan Industries, Inc.; Electrical Products Division, LLC.
6. Harger Lightning and Grounding.
7. ILSCO.
9. Robbins Lightning, Inc.
10. Siemens Power Transmission & Distribution, Inc.

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches (6.3 by 100 mm in cross section, with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart. Stand-off insulators for
mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad sectional type; 5/8 by 96 inches (16 by 2400 mm).

B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.

1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches (1200 mm) long.
2. Backfill Material: Electrode manufacturers recommended material.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.

1. Bury at least 24 inches (600 mm) below grade.
2. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.

1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.
B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
 6. Flexible raceway runs.
 7. Metal-clad cable runs.
C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
E. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
B. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.

2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts. Building is existing and Bonding will require new straps or the utilization of existing if adequately sized.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment. Both new and existing equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
 3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.

H. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

B. Related Sections include the following:

1. Section 26 0548 "Vibration and Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. IMC: Intermediate metal conduit.

C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 ACTION SUBMITTALS

A. Product Data: For the following:

1. Steel slotted support systems.
2. Nonmetallic slotted support systems.
B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:

1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Nonmetallic slotted channel systems. Include Product Data for components.
4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.
 g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer’s standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer’s standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 05 50 00 "Metal Fabrications" for steel shapes and plates.
PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 6. To Steel: Spring-tension clamps.
 7. To Light Steel: Sheet metal screws.
 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.
E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 5000 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 3053 "Miscellaneous Cast-in-Place Concrete."

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 09 91 23 "Interior Painting for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION
0SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Nonmetal conduits, tubing, and fittings.
3. Metal wireways and auxiliary gutters.
4. Nonmetal wireways and auxiliary gutters.
5. Surface raceways.
7. Handholes and boxes for exterior underground cabling.

B. Related Requirements:

1. Section 26 0543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
2. Section 27 0528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid steel conduit.
C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions including those for internal components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following, but are not limited to, the following:

1. AFC Cable Systems, Inc.
3. Anamet Electrical, Inc.
4. Electri-Flex Company.
5. O-Z/Gedney.
6. Picoma Industries.
7. Republic Conduit.
8. Robroy Industries.
10. Thomas & Betts Corporation.
11. Western Tube and Conduit Corporation.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.
D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch (1 mm), minimum.

G. EMT: Comply with ANSI C80.3 and UL 797.

H. FMC: Comply with UL 1; zinc-coated steel.

I. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

J. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew or compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch (1 mm), with overlapping sleeves protecting threaded joints.

K. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following, but are not limited to, the following:
 1. AFC Cable Systems, Inc.
 2. Anamet Electrical, Inc.
 3. Arnco Corporation.
 4. CANTEX Inc.
 5. CertainTeed Corporation.
 7. Electri-Flex Company.
 8. Kraloy.
 9. Lamson & Sessions; Carlon Electrical Products.
 10. Niedax-Kleinhuis USA, Inc.
 11. RACO; Hubbell.
 12. Thomas & Betts Corporation.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.
D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Rigid HDPE: Comply with UL 651A.

G. Continuous HDPE: Comply with UL 651B.

H. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

I. RTRC: Comply with UL 1684A and NEMA TC 14.

J. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

K. Fittings for LFNC: Comply with UL 514B.

L. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

M. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements provide products by one of the following, but are not limited to, the following:

1. Cooper B-Line, Inc.
2. Hoffman.
4. Square D.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following, but are not limited to, the following:

1. Allied Moulded Products, Inc.
2. Hoffman.
3. Lamson & Sessions; Carlon Electrical Products.
4. Niedax-Kleinhuis USA, Inc.

B. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

D. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

E. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

F. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Prime coated, ready for field painting.

1. Manufacturers: Subject to compliance with requirements provide products by one of the following, but are not limited to, the following:
 a. Mono-Systems, Inc.
 b. Panduit Corp.
 c. Wiremold / Legrand.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following, but are not limited to, the following:
 a. Hubbell Incorporated.
 b. Mono-Systems, Inc.
 c. Panduit Corp.
 d. Wiremold / Legrand.

D. Tele-Power Poles:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following, but are not limited to, the following:

 a. Mono-Systems, Inc.
 b. Panduit Corp.
 c. Wiremold / Legrand.

3. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements provide products by one of the following:

 1. Wiremold / Legrand
 2. Adalet.
 3. Cooper Technologies Company; Cooper Crouse-Hinds.
 4. EGS/Appleton Electric.
 5. Erickson Electrical Equipment Company.
 6. FSR Inc.
 8. Hubbell Incorporated.
 10. Milbank Manufacturing Co.
 11. Mono-Systems, Inc.
 13. RACO; Hubbell.
 15. Spring City Electrical Manufacturing Company.
 17. Thomas & Betts Corporation.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:

 1. Material: Cast metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
G. Nonmetallic Floor Boxes: Nonadjustable, rectangular.
 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

I. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

J. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

K. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

L. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

M. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).

N. Gangable boxes are allowed up to a four devices.

O. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

P. Cabinets:
 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in door front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC.
 2. Concealed Conduit, Aboveground: GRC, IMC, and EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.

5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT.

2. Exposed, Not Subject to Severe Physical Damage: EMT.

3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.

4. Concealed in Ceilings and Interior Walls and Partitions: EMT.

5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.

6. Damp or Wet Locations: GRC.

7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.

2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealants recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.

3. EMT: Use setscrew or compression, fittings. Comply with NEMA FB 2.10.

4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches (300 mm) of enclosures to which attached.

I. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer’s written instructions.

K. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

L. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

R. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend points.
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer’s written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

U. Comply with manufacturer’s written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer’s written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.
X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to top of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 31 20 00 "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.

2. Install backfill as specified in Section 31 20 00 "Earth Moving."

3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.

5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.

 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete for a minimum of 12 inches (300 mm) on each side of the coupling.

 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

6. Warning Planks: Bury warning planks approximately 12 inches (300 mm) above direct-buried conduits but a minimum of 6 inches (150 mm) below grade. Align planks along centerline of conduit.
7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

B. Samples: For each type of label and sign to illustrate size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: An index of nomenclature of electrical equipment and system components used in identification signs and labels.

1.4 QUALITY ASSURANCE

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Tape and Stencil for Raceways Carrying Circuits More Than 600 V: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers diagonally over orange background that extends full length of raceway or duct and is 12 inches (300 mm) wide. Stop stripes at legends.

G. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

H. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.
C. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- (0.08-mm-) thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.

E. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch (50 by 50 by 1.3 mm), with stamped legend, punched for use with self-locking cable tie fastener.

F. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

G. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

H. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of cable it identifies and to stay in place by gripping action.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- (0.08-mm-) thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.

F. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

G. Write-On Tags: Polyester tag, 0.015 inch (0.38 mm) thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Labels for Tags: Self-adhesive label, machine-printed with permanent, waterproof, black ink recommended by printer manufacturer, sized for attachment to tag.

2.4 FLOOR MARKING TAPE

A. 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.5 UNDERGROUND-LINE WARNING TAPE

1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
2. Printing on tape shall be permanent and shall not be damaged by burial operations.
3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:

1. Comply with ANSI Z535.1 through ANSI Z535.5.
2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

C. Tag: Type I:

1. Pigmented polyolefin, bright-colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
2. Thickness: 4 mils (0.1 mm).
3. Weight: 18.5 lb/1000 sq. ft. (9.0 kg/100 sq. m).
4. 3-Inch (75-mm) Tensile According to ASTM D 882: 30 lbf (133.4 N), and 2500 psi (17.2 MPa).

2.6 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:

1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal size, 7 by 10 inches (180 by 250 mm).

D. Metal-Backed, Butyrate Warning Signs:

1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal size, 10 by 14 inches (250 by 360 mm).

E. Warning label and sign shall include, but are not limited to, the following legends:
1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

3. Arc Flash Warnings: Refer to specification section 260574 for Label requirements.

2.7 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. inches (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.

1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

2.8 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm).

B. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

C. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

D. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

E. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.

1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 12,000 psi (82.7 MPa).
3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
1. Minimum Width: 3/16 inch (5 mm).
2. Tensile Strength at 73 deg F (23 deg C), According to ASTM D 638: 7000 psi (48.2 MPa).
3. UL 94 Flame Rating: 94V-0.
4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
5. Color: Black.

2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.

G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 25-foot (15-m) maximum intervals in straight runs, and at 10-foot (7.6-m) maximum intervals in congested areas.

H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:

1. Outdoors: UV-stabilized nylon.
2. In Spaces Handling Environmental Air: Plenum rated.

J. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 12 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.
K. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways, 600 V or Less, for Service, Feeder, and Branch Circuits 15A or More and 120V to ground: Identify with self-adhesive vinyl tape applied in bands. Install labels at 10-foot (3-m) maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend, system voltage, and panel circuit number(s). System legends shall be as follows:

2. Power.
3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

 a. Color shall be factory applied.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 4) Neutral: White.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 4) Neutral: Grey.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color code for grounded and ungrounded conductors using adhesive-film-type labels.

E. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, use self-adhesive, self-laminating polyester labels conductor or cable designation, origin, and destination.

F. Control-Circuit Conductor Termination Identification: For identification at terminations provide self-adhesive, self-laminating polyester labels with the conductor designation.

G. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

I. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

J. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

K. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 a. Power transfer switches.
 b. Controls with external control power connections.

L. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

M. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

N. Wiring Device Identification: For each receptacle, non-low voltage switch, or similar wiring device provide identification label.
 1. Labeling Instructions: Label each device describing the panel and circuit number feeding it. Use clear white label with 3/16" high black font.

O. Identify Raceways and Exposed Cables with Color Banding: Band exposed and accessible raceways of the systems listed below for identification.
 1. Bands: Pre-tensioned, snap-around, colored plastic sleeves; colored adhesive tape; or a combination of both. Make each color band 3/4 inches wide standard color tape, completely encircling conduit, and place adjacent bands of 2-color markings in contact, side by side.
 2. Locate bands at changes in direction, at penetrations of walls and floors, at 20-foot maximum intervals in straight runs, and at 10 feet in congested areas.
 3. Colors: As follows:
 a. 120/208 Volt – Black.
b. 277/480 Volt – Orange.

c. Emergency 120/208 Volt – Black and orange.

d. Emergency 277/480 Volt – Blue and orange.

e. Fire-Alarm System: Red.

h. Security System: Blue and yellow.

i. Mechanical and Electrical Supervisory System: Green and blue.

j. Data System: Blue.

k. Television Systems: Green and White.

l. Sound/PA: Orange.

m. Telephone: Orange and yellow.

P. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:

a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

b. Outdoor Equipment: Engraved, laminated acrylic or melamine label 4 inches (100 mm) high.

c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.

d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

2. Equipment to Be Labeled: Panel 1H1 120/208V, 3-PH, 4-wire fed from panel MDR-CCT#4.

a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.

b. Enclosures and electrical cabinets.

c. Access doors and panels for concealed electrical items.

d. Switchgear.

e. Switchboards.

f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

h. Motor-control centers.

i. Enclosed switches.

j. Enclosed circuit breakers.

k. Enclosed controllers.

l. Variable-speed controllers.

m. Push-button stations.

n. Power transfer equipment.

o. Contactors.
q. Battery-inverter units.
r. Battery racks.
s. Power-generating units.
t. Monitoring and control equipment.
u. UPS equipment.
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Time switches.
2. Photoelectric switches.
4. Indoor occupancy sensors.
5. Outdoor motion sensors.
7. Emergency shunt relays.

B. Related Requirements:

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.

1. Interconnection diagrams showing field-installed wiring.
2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of, but are not limited to, the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Invensys Controls.
5. NSi Industries LLC; TORK Products.
6. Tyco Electronics; ALR Brand.

2.2 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the, but are not limited to, the following:

2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. General Electric Company; GE Consumer & Industrial - Electrical Distribution; Total Lighting Control.
5. Square D; a brand of Schneider Electric.

B. Description: Electrically operated and electrically held, combination-type lighting contactors with fusible switch, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

C. BAS Interface: Provide hardware interface to enable the BAS to monitor and control lighting contactors.

1. Monitoring: On-off status,
2. Control: On-off operation.

2.3 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.
3.2 WIRING INSTALLATION

A. Wiring Method: Comply with Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).

B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer’s written instructions.

C. Size conductors according to lighting control device manufacturer’s written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

A. Identify components and power and control wiring according to Section 26 0553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Lighting control devices will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Coordinate demonstration of products specified in this Section with demonstration requirements for low-voltage, programmable lighting control systems specified in Section 26 0943.13 "Addressable-Fixture Lighting Controls" and Section 26 0943.23 "Relay-Based Lighting Controls."

B. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION
SECTION 262416-PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.
3. Load centers.
4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. SVR: Suppressed voltage rating.
B. TVSS: Transient voltage surge suppressor.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
2. Detail enclosure types and details for types other than NEMA 250, Type 1.
3. Detail bus configuration, current, and voltage ratings.
4. Short-circuit current rating of panelboards and overcurrent protective devices.
5. Include evidence of NRTL listing for series rating of installed devices.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
7. Include wiring diagrams for power, signal, and control wiring.
8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.
B. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field Quality-Control Reports:

1. Test procedures used.
2. Test results that comply with requirements.
3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and Ground Fault Equipment Protection (GFEP) Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

PANELBOARDS
262416 - 2
C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 1.

F. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 PROJECT CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 b. Altitude: Not exceeding project site elevation. Contractor to verify site elevation prior to ordering equipment.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect, Construction Manager, and Building Manager/Owner no fewer than two weeks in advance of proposed interruption of electric service.

2. Do not proceed with interruption of electric service without written permission.

3. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
1.12 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush and/or surface mounted cabinets as indicated on plans.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

4. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

5. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

6. Finishes:
 a. Panels and Trim: galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

C. Incoming Mains Location: Top and/or bottom depending on installation requirements.

D. Phase, Neutral, and Ground Buses:

2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

3. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box.
4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
5. Split Bus: Vertical buses divided into individual vertical sections.

E. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Main and Neutral Lugs: Compression type.
3. Ground Lugs and Bus-Configured Terminators: Compression type.
4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
6. Gutter-Tap Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
7. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.

F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards or load centers with one or more main service disconnecting and overcurrent protective devices.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event.

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 DISTRIBUTION PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.

D. Mains: Circuit breaker and/or Lugs only.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:

 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrially mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Communication Capability: Universal-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 26 0913 "Electrical Power Monitoring and Control."
 f. Shunt Trip: 120V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.
 h. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 i. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
B. Examine panelboards before installation. Reject panelboards that are damaged or rusted or have been subjected to water saturation.
C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install panelboards and accessories according to NEMA PB 1.1.
B. Equipment Mounting: Install panelboards on concrete bases, 4-inch (100-mm) nominal thickness. Comply with requirements for concrete base specified in [Section 03 3000 "Cast-in-Place Concrete."] [Section 03 3053 "Miscellaneous Cast-in-Place Concrete."]
1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around full perimeter of base.
2. For panelboards, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to panelboards.
5. Attach panelboard to the vertical finished or structural surface behind the panelboard.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

D. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

E. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.

F. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

G. Install overcurrent protective devices and controllers not already factory installed.

1. Set field-adjustable, circuit-breaker trip ranges.

H. Install filler plates in unused spaces.

I. Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

J. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

K. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 26 05 53 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner’s final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

F. Panelboards will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable component to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."
C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.

1. Measure as directed during period of normal system loading.
2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

3.6 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer’s written instructions.

END OF SECTION
SECTION 262726-WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Twist-locking receptacles.
3. Receptacles with integral surge-suppression units.
4. Isolated-ground receptacles.
5. Hospital-grade receptacles.
6. Tamper-resistant receptacles.
7. Weather-resistant receptacles.
8. Snap switches and wall-box dimmers.
10. Wall-switch and exterior occupancy sensors.
11. Communications outlets.
13. Cord and plug sets.
14. Floor service outlets, poke-through assemblies, service poles, and multioutlet assemblies.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.
B. GFCI: Ground-fault circuit interrupter.
C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
D. RFI: Radio-frequency interference.
E. TVSS: Transient voltage surge suppressor.
F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Floor Service-Outlet Assemblies: One for every 10, but no less than one.
2. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.
3. TVSS Receptacles: One for every 10 of each type installed, but no fewer than two of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:

1. Cooper Wiring Devices; Division of Cooper Industries, Inc. (Cooper).
2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).

B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.
2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Products: Subject to compliance with requirements, provide one of, but are not limited to the following:
 a. Cooper; 5351 (single), CR5362 (duplex).
 b. Hubbell; HBL5351 (single), HBL5352 (duplex).
 c. Leviton; 5891 (single), 5352 (duplex).
 d. Pass & Seymour; 5361 (single), 5362 (duplex).

B. Isolated-Ground, Duplex Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

1. Products: Subject to compliance with requirements, provide one of, but are not limited to, the following:
 a. Cooper; IG5362RN.
 b. Hubbell; IG5362.
 c. Leviton; 5362-IG.
 d. Pass & Seymour; IG5362.

2. Description: Straight blade; equipment grounding contacts shall be connected only to the green grounding screw terminal of the device and with inherent electrical isolation from mounting strap. Isolation shall be integral to receptacle construction and not dependent on removable parts.

2.4 GFCI RECEPTACLES

A. General Description:

1. Straight blade, feed through type.
2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

1. Products: Subject to compliance with requirements, provide one, but are not limited to, the following:
 a. Cooper; VGF20.
 b. Hubbell; GFR5352L.
 c. Pass & Seymour; 2095.
 d. Leviton; 7590.

2.5 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020
Bridgers & Paxton

262726 - 3
B. Switches, 120/277 V, 20 A:

1. Products: Subject to compliance with requirements, provide one of, but are not limited to, the following:

 a. Single Pole:

 1) Cooper; AH1221.
 2) Hubbell; HBL1221.
 3) Leviton; 1221-2.
 4) Pass & Seymour; CSB20AC1.

 b. Two Pole:

 1) Cooper; AH1222.
 2) Hubbell; HBL1222.
 3) Leviton; 1222-2.
 4) Pass & Seymour; CSB20AC2.

 c. Three Way:

 1) Cooper; AH1223.
 2) Hubbell; HBL1223.
 3) Leviton; 1223-2.
 4) Pass & Seymour; CSB20AC3.

 d. Four Way:

 1) Cooper; AH1224.
 2) Hubbell; HBL1224.
 3) Leviton; 1224-2.
 4) Pass & Seymour; CSB20AC4.

C. Pilot-Light Switches, 20 A:

1. Products: Subject to compliance with requirements, provide one, but are not limited to, the following:

 a. Cooper; AH1221PL for 120 and 277 V.
 b. Hubbell; HBL1201PL for 120 and 277 V.
 c. Leviton; 1221-LH1.
 d. Pass & Seymour; PS20AC1RPL for 120 V, PS20AC1RPL7 for 277 V.

2. Description: Single pole, with neon-lighted handle, illuminated when switch is "off."

D. Key-Operated Switches, 120/277 V, 20 A:

1. Products: Subject to compliance with requirements, provide one, but are not limited to, the following:

 a. Cooper; AH1221L.
 b. Hubbell; HBL1221L.
 c. Leviton; 1221-2L.
 d. Pass & Seymour; PS20AC1-L.
2. Description: Single pole, with factory-supplied key in lieu of switch handle.

E. Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors.

1. Products: Subject to compliance with requirements, provide one, but are not limited to, the following:
 b. Hubbell; HBL1557.
 c. Leviton; 1257.
 d. Pass & Seymour; 1251.

F. Key-Operated, Single-Pole, Double-Throw, Momentary-Contact, Center-off Switches: 120/277 V, 20 A; for use with mechanically held lighting contactors, with factory-supplied key in lieu of switch handle.

1. Products: Subject to compliance with requirements, provide one of, but are not limited to, the following:
 a. Cooper; 1995L.
 b. Hubbell; HBL1557L.
 c. Leviton; 1257L.
 d. Pass & Seymour; 1251L.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Incandescent Lamp Dimmers: 120 V; control shall follow square-law dimming curve. On-off switch positions shall bypass dimmer module.

1. 600 W; dimmers shall require no derating when ganged with other devices. Illuminated when "off."

D. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Steel with white baked enamel, suitable for field painting
4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, thermoplastic with lockable cover.
2.8 FLOOR SERVICE FITTINGS
 A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
 B. Compartments: Barrier separates power from voice and data communication cabling.
 C. Service Plate: Rectangular, solid brass with satin finish.
 D. Power Receptacle: NEMA WD 6 Configuration 5-20R, gray finish, unless otherwise indicated.

2.9 PREFABRICATED MULTIOUTLET ASSEMBLIES
 A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:
 1. Hubbell Incorporated; Wiring Device-Kellems.
 2. Wiremold/Legrand.
 B. Description:
 1. Two-piece surface metal raceway, with factory-wired multioutlet harness.
 2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
 C. Raceway Material: Non-Metal, with manufacturer's standard finish.

2.10 FINISHES
 A. Device Color:
 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.
 3. TVSS Devices: Blue.
 4. Isolated-Ground Receptacles: Orange.
 B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
 B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.
C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
10. Back to back devices in common walls are not permitted. Outlet boxes shall be separated by at least one stud wherever possible. In case of outlet boxes in adjacent rooms in the same stud cavity at the same height, provide a layer of expandable spray foam insulation around each box in that cavity. There must be a minimum of a 1” horizontal separation space between boxes of adjacent rooms. If this condition occurs in a fire rated wall, provide a 1 hour fire rated putty pad to cover the back of the outlets on one side of the partition. Other junction box installation on fire rated walls shall comply with UL requirements.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 26 0553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Test straight-blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz. (115 g).

D. Wiring device will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION
SECTION 262813-FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, enclosed controllers, and motor-control centers.
2. Plug fuses rated 125-V ac and less for use in plug-fuse-type enclosed switches and fuseholders.
4. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer’s technical data on which ambient temperature adjustment calculations are based.
2. Dimensions and manufacturer’s technical data on features, performance, electrical characteristics, and ratings.
4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit on translucent log-log graph paper.
5. Coordination charts and tables and related data.
6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit on translucent log-log graph paper.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Comply with UL 248-11 for plug fuses.

1.7 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.8 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of, but are not limited to, the following:

1. Cooper Bussmann, Inc.
2. Edison Fuse, Inc.
3. Ferraz Shawmut, Inc.
4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
2.3 PLUG FUSES
 A. Characteristics: UL 248-11, nonrenewable plug fuses; 125-V ac.

2.4 PLUG-FUSE ADAPTERS
 A. Characteristics: Adapters for using Type S, rejection-base plug fuses in Edison-base fuseholders or sockets; ampere ratings matching fuse ratings; irremovable once installed.

2.5 SPARE-FUSE CABINET
 A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 1. Size: Adequate for storage of spare fuses specified with 10 percent spare capacity minimum.
 2. Finish: Gray, baked enamel.
 3. Identification: "SPARE FUSES" in 1-1/2-inch- (38-mm-) high letters on exterior of door.
 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
 B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
 C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
 D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
 E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS
 A. Cartridge Fuses:
 1. Other Branch Circuits: Class J, fast acting.
 2. Control Circuits: Class CC, fast acting.
 B. Plug Fuses:
 2. Other Branch Circuits: Edison-base type, dual-element time delay

3.3 INSTALLATION
 A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
 B. Install plug-fuse adapters in Edison-base fuse holders and sockets. Ensure that adapters are irremovable once installed.
C. Install spare-fuse cabinet(s).

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION
SECTION 262816-ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.
 3. Receptacle switches.
 4. Shunt trip switches.
 5. Molded-case circuit breakers (MCCBs).
 7. Enclosures.

1.3 DEFINITIONS
A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS
A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 1. Enclosure types and details for types other than NEMA 250, Type 1.
 2. Current and voltage ratings.
 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 4. Include evidence of NRTL listing for series rating of installed devices.
 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

D. Manufacturer’s field service report.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 7823 "Operation and Maintenance Data," include the following:
 1. Manufacturer’s written instructions for testing and adjusting enclosed switches and circuit breakers.
 2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.
1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
2. Altitude: Not exceeding this project site elevation. Contractor will verify project site altitude prior to ordering any equipment.

B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect, Construction Manager, Building manager/Owner no fewer than two weeks in advance of proposed interruption of electric service.
2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without written permission.
4. Comply with NFPA 70E.

1.11 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. Type GD, General Duty, Single Throw, 240-V ac, 800 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with cartridge fuse interiors to accommodate specified or indicated fuses, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Single Throw, 240 and or 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified or indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Hookstick Handle: Allows use of a hookstick to operate the handle.
5. Lugs: Compression type, suitable for number, size, and conductor material.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. Type GD, General Duty, Single Throw, 600 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept two padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Hookstick Handle: Allows use of a hookstick to operate the handle.
4. Lugs: Compression type, suitable for number, size, and conductor material.

2.3 SHUNT TRIP SWITCHES
A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:
1. Cooper Bussmann, Inc.
2. Ferraz Shawmut, Inc.
3. Littelfuse, Inc.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with 200-kA interrupting and short-circuit current rating when fitted with Class J fuses.

C. Switches: Three-pole, horsepower rated, with integral shunt trip mechanism and Class J fuse block; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, connected pilot, and indicating and control devices.

E. Accessories:
1. Oiltight key switch for key-to-test function.
2. Oiltight green ON pilot light.
3. Isolated neutral lug; 200 percent rating.
4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
5. Form C alarm contacts that change state when switch is tripped.
6. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac or 24-V dc coil voltage as required by fire alarm system.
7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.

2.4 MOLDED-CASE CIRCUIT BREAKERS
A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

E. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and i^2t response.

F. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

G. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

H. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

I. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

J. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Communication Capability: Universal-mounted communication module with functions and features compatible with power monitoring and control system, specified in Section 260913 "Electrical Power Monitoring and Control."
 6. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 7. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 8. Alarm Switch: One NO and one NC contact that operates only when circuit breaker has tripped.
 9. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 10. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 11. Electrical Operator: Provide remote control for on, off, and reset operations.

2.5 MOLDED-CASE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one, but are not limited to, the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 2. Siemens Energy & Automation, Inc.
 3. Square D; a brand of Schneider Electric.

B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.

C. Features and Accessories:
1. Standard frame sizes and number of poles.
2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
3. Ground-Fault Protection: Comply with UL 1053; remote-mounted and powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Alarm Switch: One NO and one NC contact that operates only when switch has tripped.
7. Key Interlock Kit: Externally mounted to prohibit switch operation; key shall be removable only when switch is in off position.
8. Zone-Selective Interlocking: Integral with ground-fault shunt trip unit; for interlocking ground-fault protection function.

2.6 ENCLOSURES
A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Other Wet or Damp, Indoor Locations: NEMA 250, Type 3R.
 3. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
B. Comply with mounting and anchoring requirements specified in Section 26 0548 "Vibration and Seismic Controls for Electrical Systems."
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
D. Install fuses in fusible devices.
E. Comply with NECA 1.

3.3 IDENTIFICATION
A. Comply with requirements in Section 26 0553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 0573 "Overcurrent Protective Device Coordination Study."

END OF SECTION
SECTION 263213 DIESEL ENGINE GENERATOR SPECIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets suitable for use in applications with the features as specified and indicated where the engine generators will be used as the Standby power source for the system.

1.3 DEFINITIONS

A. Emergency Standby Power (ESP): Per ISO 8528: The maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generating set is capable of delivering in the event of a utility power outage or under test conditions for up to 200 hours of operation per year with the maintenance intervals and procedures being carried out as prescribed by the manufacturers. The permissible average power output (Ppp) over 24 hours of operation shall not exceed 70 percent of the ESP unless otherwise agreed by the RIC engine manufacturer.

B. Prime Power (PRP): Per ISO 8528: The maximum power which a generating set is capable of delivering continuously whilst supplying a variable electrical load when operated for an unlimited number of hours per year under the agreed operating conditions with the maintenance intervals and procedures being carried out as prescribed by the manufacturer. The permissible average power output (Ppp) over 24 hours of operation shall not exceed 70 percent of the PRP unless otherwise agreed by the RIC engine manufacturer.

C. Limited Time running Power (LTP): Per ISO 8528: The maximum power available, under the agreed operating conditions, for which the generating set is capable of delivering for up to 500 hours of operation per year with the maintenance intervals and procedures being carried out as prescribed by the manufacturers.

D. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:

1. Thermal damage curve for generator.
2. Time-current characteristic curves for generator protective device.
3. Sound test data, based on a free field requirement in DB at 23’.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, and location and size of each field connection.

1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
2. Wiring Diagrams: Control interconnection, Customer connections.
C. Certifications:

1. Submit statement of compliance which states the proposed product(s) is certified to the emissions standards required by the location for EPA, stationary emergency application.
2. Submit statement of compliance which states the proposed product(s) are seismically certified in compliance with local requirements signed and sealed by a qualified professional engineer.
3. The Generator Supplier shall apply for, obtain and provide authority to construct permit from City of Albuquerque and Bernalillo County emissions program. The Generator Supplier shall pay all required fees as well as environmental engineering and obtain all necessary permits and certifications.

1.1 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that the 24 Hour(s) fuel tank, the Sound Attenuated enclosure, engine-generator set, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
2. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Source quality-control test reports.

2. Certified Test Report: Provide certified test report documenting factory test per the requirements of this specification, as well as certified factory test of generator set sensors per NFPA110 level 1.
3. List of factory tests to be performed on units to be shipped for this Project.

C. Warranty:

1. Submit manufacturer’s warranty statement to be provided for this Project.

1.2 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer’s authorized representative who is trained and approved for installation of units required for this Project.

B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 4 hours of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

C. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

D. Comply with NFPA 37 (Standard For the Installation and Use of Stationary Combustion Engines and Gas Turbines).

E. Comply with NFPA 70 (National Electrical Code. Equipment shall be suitable for use in systems in compliance to Article 700, 701, and 702).

F. Comply with NFPA 99 (Essential Electrical Systems for Health Care Facilities).
G. Comply with NFPA 110 (Emergency and Standby Power Systems) requirements for Level 1 emergency power supply system.

H. Comply with UL 2200.

I. Noise Emission: Comply with Applicable state and local government requirements for maximum noise level at Adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.3 PROJECT CONDITIONS

A. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: -17.78 deg C (0.0 deg F) to 40.0 deg C (104.0 deg F).
2. Relative Humidity: 0 to 95 percent.
3. Altitude: Sea level to 5600.0 feet (1706.88 m).

1.4 WARRANTY

A. Base Warranty: Manufacturer shall provide base warranty coverage on the material and workmanship of the generator set for a minimum of sixty (60) months for Standby product and twelve (12) months for Prime/Continuous product from registered commissioning and start-up. The warranty shall be comprehensive and include all parts, labor and travel expense.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

Basis of Design: Cummins # C150D6D

MTU Onsite Energy # DG06RJ113A1N

Approved Equal.

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.

1. Rigging Information: Indicate location of each lifting attachment, generator-set center of gravity, and total package weight in submittal drawings.

C. Capacities and Characteristics:

1. Power Output Ratings: Electrical output power rating for Standby operation of not less than 150.0kW, at 80 percent lagging power factor, 120/208, Parallel Wye, Three phase, 4 -wire, 60 hertz.
2. Alternator shall be capable of accepting maximum 900.0 kVA in a single step and be capable of recovering to a minimum of 90% of rated no load voltage. Following the application of the specified kVA load at near zero power factor applied to the generator set.
3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component. The engine-generator nameplate shall include information of the power output rating of the equipment.
D. Generator-Set Performance:

1. Steady-State Voltage Operational Bandwidth: 0.5 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within 5 seconds. On application of a 100% load step the generator set shall recover to stable voltage within 10 seconds.
3. Steady-State Frequency Operational Bandwidth: 0.25 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Not more than 15 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within 5 seconds. On application of a 100% load step the generator set shall recover to stable frequency within 10 seconds.
6. Output Waveform: At full load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for any single harmonic. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50.
7. Sustained Short-Circuit Current: (For engine-generator sets using a PMG-excited alternator) For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 8 seconds without damage to generator system components. For a 1-phase, bolted short circuit at system output terminals, system shall regulate both voltage and current to prevent over-voltage conditions on the non-faulted phases.
8. Start Time: Comply with NFPA 110, Level 1, Type 10, system requirements.
9. Ambient Condition Performance: Engine generator shall be designed to allow operation at full rated load in an ambient temperature under site conditions, based on highest ambient condition. Ambient temperature shall be as measured at the air inlet to the engine generator for enclosed units, and at the control of the engine generator for machines installed in equipment rooms.

2.3 ENGINE

A. Fuel: ASTM D975 #2 Diesel Fuel

B. Rated Engine Speed: 1800RPM.

C. Lubrication System: The following items are mounted on engine or skid:

1. Lube oil pump: shall be positive displacement, mechanical, full pressure pump.
2. Filter and Strainer: Provided by the engine manufacturer of record to provide adequate filtration for the prime mover to be used.
3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

D. Engine Fuel System: The engine fuel system shall be installed in strict compliance to the engine manufacturer’s instructions

E. Main Fuel Pump: Mounted on engine. Pump ensures adequate primary fuel flow under starting and load conditions.

F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity and performance.

1. Designed for operation on a single 120 VAC, Single phase, 60Hz power connection. Heater voltage shall be shown on the project drawings.
2. Installed with isolation valves to isolate the heater for replacement of the element without draining the engine cooling system or significant coolant loss.

3. Provided with a 12VDC thermostat, installed at the engine thermostat housing.

G. Governor: Adjustable isochronous, with speed sensing. The governing system dynamic capabilities shall be controlled as a function of engine coolant temperature to provide fast, stable operation at varying engine operating temperature conditions. The control system shall actively control the fuel rate as appropriate to the state of the engine generator. Fuel rate shall be regulated as a function of starting, accelerating to start disconnect speed, accelerating to rated speed, and operating in various isochronous states.

H. Cooling System: Closed loop, liquid cooled

1. The generator set manufacturer shall provide prototype test data for the specific hardware proposed demonstrating that the machine will operate at rated standby load in an outdoor ambient condition of 50 deg C.

2. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.

3. Size of Radiator overflow tank: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.

4. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.

5. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.

6. Duct Flange: Generator sets installed indoors shall be provided with a flexible radiator duct adapter flange.

I. Muffler/Silencer: Selected with performance as required to meet sound requirements of the application, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer’s engine backpressure requirements. For generator sets with outdoor enclosures the silencer shall be inside the enclosure.

J. Air-Intake Filter: Engine-mounted air cleaner with replaceable dry-filter element and restriction indicator.

K. Starting System: 12 or 24V, as recommended by the engine manufacturer; electric, with negative ground.

1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 “Project Conditions” Article.

2. Cranking Cycle: As required by NFPA 110 for level 1 systems.

3. Battery Cable: Size as recommended by engine manufacturer for cable length as required. Include required interconnecting conductors and connection accessories.

5. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation. The battery charging alternator shall have sufficient capacity to recharge the batteries with all parasitic loads connected within 4 hours after a normal engine starting sequence.

6. Battery Chargers: Unit shall comply with UL 1236, provide fully regulated, constant voltage, current limited, battery charger for each battery bank. It will include the following features:

 a. Operation: Equalizing-charging rate based on generator set manufacturer’s recommendations shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.

 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 20 deg C to plus 40 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
d. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
e. Provide LED indication of general charger condition, including charging, faults, and modes. Provide a LCD display to indicate charge rate and battery voltage. Charger shall provide relay contacts for fault conditions as required by NFPA110.
f. Enclosure and Mounting: NEMA, Type 1, wall-mounted cabinet.

2.4 FUEL OIL STORAGE

A. Comply with NFPA 30.

B. Sub Base-Mounted Fuel Oil Tank: Provide a double wall secondary containment type sub base fuel storage tank. The tank shall be constructed of corrosion resistant steel and shall be UL 142 listed and labeled. The fuel tank shall include the following features:

1. Capacity: Fuel for 24 Hour(s) continuous operation at 100 percent rated power output.
2. Tank rails and lifting eyes shall be rated for the full dry weight of the tank, genset, and enclosure.
3. Electrical stub up(s)
4. Normal & emergency vents
5. Lockable fuel fill
6. Mechanical fuel level gauge
7. High and low-level switches to indicate fuel level
8. Leak detector switch
9. Sub base tank shall include a welded steel containment basin, sized at a minimum of 110% of the tank capacity to prevent escape of fuel into the environment in the event of a tank rupture.
10. Fill port with overfill prevention valve (OFPV)
11. 5 gallon fill/spill dam or bucket
12. Tank design shall meet the regional requirements for the Project location

2.5 CONTROL AND MONITORING

A. Engine generator control shall be microprocessor based and provide automatic starting, monitoring, protection and control functions for the unit.

B. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. (Switches with different configurations but equal functions are acceptable.) When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of the local (generator set-mounted) and/or remote emergency-stop switch also shuts down generator set.

C. Manual Starting System Sequence of Operation: Switching on-off switch on the generator control panel to the on position starts generator set. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of the local (generator set-mounted) and/or remote emergency-stop switch also shuts down generator set.

D. Configuration: Operating and safety indications, protective devices, system controls, engine gages and associated equipment shall be grouped in a common control and monitoring panel.
Mounting method shall isolate the control panel from generator-set vibration. AC output power circuit breakers and other output power equipment shall not be mounted in the control enclosure.

E. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 1 system, and the following:

1. AC voltmeter (3-phase, line to line and line to neutral values).
2. AC ammeter (3-phases).
3. AC frequency meter.
4. Ammeter-voltmeter displays shall simultaneously display conditions for all three phases.
5. Emergency Stop Switch: Switch shall be a red “mushroom head” pushbutton device complete with lock-out/tag-out provisions. Depressing switch shall cause the generator set to immediately stop the generator set and prevent it from operating.
6. Fault Reset Switch: Supply a dedicated control switch to reset/clear fault conditions.
7. DC voltmeter (alternator battery charging).
8. Engine-coolant temperature gauge.
9. Engine lubricating-oil pressure gauge.
10. Running-time meter.
11. Generator-voltage and frequency digital raise/lower switches. Rheostats for these functions are not acceptable. The control shall adjust these parameters in a range of plus or minus 5% of the voltage and frequency operating set point (not nominal voltage and frequency values.) The voltage and frequency adjustment functions shall be disabled when the paralleling breaker is closed.
12. Fuel tank derangement alarm.
13. Fuel tank high-level shutdown of fuel supply alarm.
14. AC Protective Equipment: The control system shall include over/under voltage, reverse kVAR over current, loss of voltage reference, and over excitation shut down protection. There shall be a overload warning, and overcurrent warning alarm.
15. Status LED indicating lamps to indicate remote start signal present at the control, existing shutdown condition, existing alarm condition, not in auto, and generator set running.
16. A graphical display panel with appropriate navigation devices shall be provided to view all information noted above, as well as all engine status and alarm/shutdown conditions (including those from an integrated engine emission control system). The display shall also include integrated provisions for adjustment of the gain and stability settings for the governing and voltage regulation systems.
17. Panel lighting system to allow viewing and operation of the control when the generator room or enclosure is not lighted.
18. Data Logging: The control system shall log the latest 20 different alarm and shut down conditions, the total number of times each alarm or shutdown has occurred, and the date and time the latest of these shutdown and fault conditions occurred.
19. DC control Power Monitoring: The control system shall continuously monitor DC power supply to the control, and annunciate low or high voltage conditions. It shall also provide an alarm indicating imminent failure of the battery bank based on degraded voltage recover on loading (engine cranking).

F. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.

1. Overcrank shutdown.
2. Coolant low-temperature alarm.
3. Control switch not in auto position.
4. Battery-charger malfunction alarm.
5. Battery low-voltage alarm.

G. Remote Alarm Annunciator: Comply with NFPA 110. An LED labeled with proper alarm conditions shall identify each alarm event and a common audible signal shall sound for each alarm condition.
H. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H

D. Temperature Rise: 105 / Class F environment.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, over speed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Permanent Magnet Generator (PMG) shall provide excitation power for optimum motor starting and short circuit performance.

G. Enclosure: Drip-proof.

H. Voltage Regulator: SCR type, Separate from exciter, providing performance as specified. The voltage regulation system shall be microprocessor-controlled, full wave rectified, and provide a pulse-width modulated signal to the exciter. No exceptions or deviations to these requirements will be permitted.

I. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

J. Subtransient Reactance: 11 percent maximum, based on the rating of the engine generator set.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Sound Attenuated Aluminum housing. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Instruments, control, and battery system shall be mounted within enclosure.

B. Construction:

1. Hinged Doors: With padlocking provisions. Restraint/Hold back hardware to prevent door to keep door open at 180 degrees during maintenance. Rain lips over all doors.

2. Exhaust System:

 a. Muffler Location: Within enclosure.

3. Hardware: All hardware and hinges shall be stainless steel.

4. Mounting Base: Suitable for mounting on sub-base fuel tank or housekeeping pad.

5. A weather protective enclosure shall be provided which allows the generator set to operate at full rated load with a static pressure drop equal to or less than 0.5 inches of water.

C. Engine Cooling Airflow through Enclosure: Housing shall provide ample airflow for engine generator operation at rated load in an ambient temperature of 50 deg C.

1. Louvers: Fixed-engine, cooling-air inlet and discharge.

D. Sound Performance: Reduce the sound level of the engine generator while operating at full rated load to a maximum of 74 dBA measured at any location 7 m from the engine generator in a free field environment.
E. Site Provisions:

1. Lifting: Complete assembly of engine generator, enclosure, and sub base fuel tank (when used) shall be designed to be lifted into place as a single unit, using spreader bars.

2.8 VIBRATION ISOLATION DEVICES

A. Vibration Isolation: Generators installed on grade shall be provided with elastomeric isolator pads integral to the generator, unless the engine manufacturer requires use of spring isolation.

2.9 FINISHES

A. Indoor and Outdoor Enclosures and Components: Powder-coated and baked over corrosion-resistant pretreatment and compatible primer. Manufacturer’s standard color or as directed on the drawings.

2.10 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

1. Tests: Comply with NFPA 110, Level 1 Energy Converters. In addition, the equipment engine, skid, cooling system, and alternator shall have been subjected to actual prototype tests to validate the capability of the design under the abnormal conditions noted in NFPA110. Calculations and testing on similar equipment which are allowed under NFPA110 are not sufficient to meet this requirement.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation, application, and alignment instructions and with NFPA 110.

B. Equipment shall be installed by the contractor in accordance with final submittals and contract documents. Installation shall comply with applicable state and local codes as required by the authority having jurisdiction. Install equipment in accordance with manufacturer’s instructions and instructions included in the listing or labeling of UL listed products.

C. Installation of equipment shall include furnishing and installing all interconnecting wiring between all major equipment provided for the on-site power system. The contractor shall also perform interconnecting wiring between equipment sections (when required), under the supervision of the equipment supplier.

D. Equipment shall be installed on concrete housekeeping pads. Equipment shall be permanently fastened to the pad in accordance with manufacturer’s instructions and seismic requirements of the site.

E. Equipment shall be initially started and operated by representatives of the manufacturer. All protective settings shall be adjusted as instructed by the consulting engineer.

F. All equipment shall be physically inspected for damage. Scratches and other installation damage shall be repaired prior to final system testing. Equipment shall be thoroughly cleaned to remove all dirt and construction debris prior to initial operation and final testing of the system.

G. On completion of the installation by the electrical contractor, the generator set supplier shall conduct a site evaluation to verify that the equipment is installed per manufacturer’s recommended practice.
3.2 ON-SITE ACCEPTANCE TEST

A. The complete installation shall be tested to verify compliance with the performance requirements of this specification following completion of all site work. Testing shall be conducted by representatives of the manufacturer, with required fuel supplied by Contractor. The Engineer shall be notified in advance and shall have the option to witness the tests. The generator set manufacturer shall provide a site test specification covering the entire system. Tests shall include:

B. Prior to start of active testing, all field connections for wiring, power conductors, and bus bar connections shall be checked for proper tightening torque.

C. Installation acceptance tests to be conducted on site shall include a "cold start" test, a two hour full load (resistive) test, and a one-step rated load pickup test in accordance with NFPA 110. Provide a resistive load bank and make temporary connections for full load test, if necessary.

D. Perform a power failure test on the entire installed system. This test shall be conducted by opening the power supply from the utility service, and observing proper operation of the system for at least 2 hours. Coordinate timing and obtain approval for start of test with site personnel.

3.3 TRAINING

A. The equipment supplier shall provide training for the facility operating personnel covering operation and maintenance of the equipment provided. The training program shall be not less than 4 hours in duration and the class size shall be limited to 5 persons. Training date shall be coordinated with the facility owner.

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

3.5 SERVICE AND SUPPORT

A. The generator set supplier shall maintain service parts inventory for the entire power system at a central location which is accessible to the service location 24 hours per day, 365 days per year. The inventory shall have a commercial value of $3 million or more. The manufacturer of the generator set shall maintain a central parts inventory to support the supplier, covering all the major components of the power system, including engines, alternators, control systems, paralleling electronics, and power transfer equipment.

B. The generator set shall be serviced by a local service organization that is trained and factory certified in generator set service. The supplier shall maintain an inventory of critical power system replacement parts in the local service location. Service vehicles shall be stocked with critical replacement parts. The service organization shall be on call 24 hours per day, 365 days per year. The service organization shall be physically located within 10 of the site.

C. The manufacturer shall maintain model and serial number records of each generator set provided for at least 20 years.

3.6 SERVICE AGREEMENT:

A. The supplier shall include in the base price, a one-year service agreement. The maintenance shall be performed by factory authorized service technicians capable of servicing both the engine generator set and the transfer switch (es). This agreement shall include the following:

1. Generator supplier must have an in-house rental fleet with equipment sized to back up this project site.
2. All engine maintenance as recommended by the service manual.
3. All electrical controls maintenance and calibrations as recommended by the manufacturer.
4. All auxiliary equipment as a part of the emergency systems.
5. The supplier shall guarantee emergency service.
6. All expendable maintenance items are to be included in this agreement.
7. A copy of this agreement and a schedule shall be given to the Owner at the time of his acceptance, showing what work is to be accomplished and when.

END OF SECTION
SECTION 263600-TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes transfer switches rated 600 V and less, including the following:

1. Automatic transfer switches
2. Remote annunciation systems

B. Related Sections include the following:

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.

1. Technical data on all major components of all transfer switches and other products described in this section. Data is required for the transfer switch mechanism, control system, cabinet, and protective devices specifically listed for use with each transfer switch. Include steady state and fault current ratings, weights, operating characteristics, and furnished specialties and accessories.

2. Single Line Diagram: Show connections between transfer switch, power sources and load

B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.

1. Dimensioned outline drawings of assembly, including elevations, sections, and details including minimal clearances, conductor entry provisions, gutter space, installed features and devices and material lists for each switch specified.

2. Internal electrical wiring and control drawings.

3. Interconnection wiring diagrams, showing recommended conduit runs and point-to-point terminal connections to generator set.

4. Installation and mounting instructions, including information for proper installation of equipment to meet seismic requirements.

C. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:

1. Seismic certification, as required for site conditions. Seismic certifications shall be third-party certified, and based on testing. Certification based on calculations does not meet this requirement.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational both during and after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. Coordinate paragraph below with qualification requirements in Division 01 Section "Quality Requirements" and as supplemented in "Quality Assurance" Article.

D. Manufacturer and Supplier Qualification Data

1. The transfer switch manufacturer shall be certified to ISO 9001 International Quality Standard and shall have third party certification verifying quality assurance in design/development, production, installation, and service, in accordance with ISO 9001.
2. The manufacturer of this equipment shall have produced similar equipment for a minimum period of 10 years. When requested, an acceptable list of installations with similar equipment shall be provided demonstrating compliance with this requirement.

E. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. Features and operating sequences, both automatic and manual.
2. List of all factory settings of relays, timers and protective devices; provide setting and calibration instructions where applicable.

F. Warranty documents demonstrating compliance with the project’s contract requirements.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: The equipment supplier shall maintain a service center capable of providing training, parts, maintenance and emergency repairs to equipment, including transfer switch generator sets and remote monitoring equipment (if applicable) at the site within a response period of less than (eight hours or appropriate time period designated for Project) from time of notification.

1. The transfer switch shall be serviced by technicians employed by, and specially trained and certified by, the generator set supplier and the supplier shall have a service organization that is factory-certified in both generator set and transfer switch service. The supplier shall maintain an inventory of critical replacement parts at the local service organization, and in service vehicles. The service organization shall be on call 24 hours per day, 365 days per year.
2. Submit names, experience level, training certifications, and locations for technicians that will be responsible for servicing equipment at this site.
3. The manufacturer shall maintain model and serial number records of each transfer switch provided for at least 20 years.

B. Source Limitations: All transfer switches are to be obtained through one source from a single manufacturer. The generator set manufacturer shall warrant transfer switches to provide a single source of responsibility for products provided.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked as suitable for use in emergency, legally required or optional standby use as appropriate for the connected load.

D. The automatic transfer switch installation and application shall conform to the requirements of the following codes and standards:

1. Transfer switches and enclosures shall be UL 1008 listed and labeled as suitable for use in emergency, legally required, and optional standby applications.
3. NFPA 70, National Electrical Code. Equipment shall be suitable for use in systems in compliance with Articles 700, 701 and 702.
4. Comply with NEMA ICS 10-1993 AC Automatic Transfer Switches
5. IBC 2012 – The transfer switch(es) shall be prototype-tested and third-party certified to comply with the requirements of IBC group III or IV, Category D/F. The equipment shall be shipped with the installation instructions necessary to attain installation compliance.
6. IEEE 446 – Recommended Practice for Emergency and Standby Power Systems for Commercial and Industrial Applications
7. EN55011, Class B Radiated Emissions and Class B Conducted Emissions
8. IEC 1000-4-5 (EN 61000-4-5); AC Surge Immunity
9. IEC 1000-4-4 (EN 61000-4-4) Fast Transients Immunity
10. IEC 1000-4-2 (EN 61000-4-2) Electrostatic Discharge Immunity
11. IEC 1000-4-3 (EN 61000-4-3) Radiated Field Immunity
12. IEC 1000-4-6 Conducted Field Immunity
13. IEC 1000-4-11 Voltage Dip Immunity
14. IEEE 62.41, AC Voltage Surge Immunity
15. IEEE 62.45, AC Voltage Surge Testing

E. Comply with NFPA 99 – Essential Electrical Systems for Healthcare Facilities

F. Comply with NFPA 110 – Emergency and Standby Power Systems. The transfer switch shall meet all requirements for Level 1 systems, regardless of the actual circuit level.

G. The manufacturer shall warrant the material and workmanship of the transfer switch equipment for a minimum of five (5) year from the warranty start date. The warranty start date is the date of registered commissioning and start up or eighteen (18) months from date of shipment, whichever is sooner.

H. The warranty shall be comprehensive. No deductibles shall be allowed for travel time, service hours, repair parts cost, and etc. during the minimum noted warranty period described above.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service:

1. Notify (Architect/Construction Manager/Owner) no fewer than (insert appropriate number) days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without (Architect/Construction Manager/Owner’s) written permission.
3. Do not energize any new service or distribution equipment without notification and permission of the (Architect/Construction Manager/Owner).

1.6 COORDINATION

A. Size and location of concrete bases and anchor bolt inserts shall be coordinated. Concrete, reinforcement and formwork must meet the requirements specified in Division 03. See section "INSTALLATION" for additional information on installation

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cummins Power Generation OTPC
2. Eaton Corporation
3. Approved Equal
B. Equipment specifications for this Project are based on automatic transfer switches manufactured by the manufacturers listed above. Substitute switches manufactured by other manufacturers will not be considered.

C. Transfer switches utilizing molded case circuit breakers do not meet the requirements of this specification and will not be accepted.

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Provide transfer switches in the number and ratings that are shown on the drawings.

B. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer.

C. Fault-Current Closing and Withstand Ratings: UL 1008 WCR ratings must be specifically listed as meeting the requirements for use with protective devices at installation locations, under specified fault conditions, but not less than 65KAIC. Withstand and closing ratings shall be based on use of the same set of contacts for the withstand test and the closing test.

D. Solid-State Controls: All settings should be accurate to +/- 2% or better over an operating temperature range of -40 to +60 degrees C (-40 to +140 degrees F).

E. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

F. Electrical Operation: Accomplished by a non-fused, momentarily energized solenoid or electric motor operator mechanism, mechanically and electrically interlocked in both directions (except that mechanical interlock is not required for closed transition switches).

G. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. Switches using molded-case switches or circuit breakers, or insulated case circuit breaker components are not acceptable.
2. Transfer switches shall be double-throw, electrically and mechanically interlocked, and mechanically held in the Source 1 and Source 2 positions.
3. Main switch contacts shall be high pressure silver alloy. Contact assemblies shall have arc chutes for positive arc extinguishing. Arc chutes shall have insulating covers to prevent inter-phase flashover.
4. Contacts shall be operated by a high-speed electrical mechanism that causes contacts to open or close within three electrical cycles from signal.
5. Transfer switch shall be provided with flame retardant transparent covers to allow viewing of switch contact operation but prevent direct contact with components that could be operating at line voltage levels.
6. The transfer switch shall include the mechanical and control provisions necessary to allow the device to be field-configured for operating speed. Transfer switch operation with motor loads shall be as is recommended in NEMA MG1.
 a. Phase angle monitoring/timing equipment is not an acceptable substitute for this functionality
7. Transfer switches designated on the drawings as “3-pole” shall have a full current-rated neutral bar with lugs.

H. Control: Transfer switch control shall be capable of communicating with the genset control, other switches and remote programming devices over a high-speed network interface.
I. Factory wiring: Transfer switch internal wiring shall be composed of pre-manufactured harnesses that are permanently marked for source and destination. Harnesses shall be connected to the control system by means of locking disconnect plug(s), to allow the control system to be easily disconnected and serviced without disconnecting power from the transfer switch mechanism.

J. Terminals: Terminals shall be pressure type and appropriate for all field wiring. Control wiring shall be equipped with suitable lugs, for connection to terminal strips.

K. Enclosures: All enclosures shall be third-party certified for compliance to NEMA ICS 6 and UL 508, unless otherwise indicated:
 1. The enclosure shall provide wire bend space in compliance to the latest version of NFPA70, regardless of the direction from which the conduit enters the enclosure.
 2. Exterior cabinet doors shall provide complete protection for the system’s internal components. Doors must have permanently mounted key-type latches. Bolted covers or doors are not acceptable.
 3. Transfer switches shall be provided in enclosures that are third party certified for their intended environment per NEMA requirements.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with requirements for Level 1 equipment according to NFPA 110.

B. Indicated current ratings:
 1. Refer to the Project drawings for specifications on the sizes and types of transfer switch equipment, withstand and closing ratings, number of poles, voltage and ampere ratings, enclosure type, and accessories.
 2. Main contacts shall be rated for 600 VAC minimum.
 3. Transfer switches shall be rated to carry 100% of rated current continuously in the enclosure supplied, in ambient temperatures of -40 to +60 degrees C (-40 to +140 degrees F), relative humidity up to 95% (non-condensing), and altitudes up to 10,000 feet (3000 meters).

C. Relay Signal: Control shall include provisions for addition of a pre-transfer relay signal, adjustable from 0 to 60 seconds, to be provided if necessary for elevator operation, based on equipment provided for the project.

D. Control: Transfer switch control shall be provided with necessary equipment and software to communicate with the genset control, other transfer switches, remote annunciation equipment, and other devices over a high-speed control network.

E. Transfer switches that are designated on the drawings as 3-pole shall be provided with a neutral bus and lugs. The neutral bus shall be sized to carry 100% of the current designated on the switch rating.

F. Automatic Transfer Switch Control Features
 1. The transfer switch control system shall be configurable in the field for any operating voltage level up to 600 VAC. Voltage sensing shall be monitored based on the normal voltage at the site. Systems that utilize voltage monitoring based on standard voltage conditions that are not field configurable are not acceptable.
 2. All transfer switch sensing shall be configurable from an operator panel or from a Windows 10 or later PC-based service tool. Designs utilizing DIP switches or other electromechanical devices are not acceptable.
 3. The transfer switch shall be configurable to accept a relay contact signal and a network signal from an external device to prevent transfer to the generator service.
 4. The transfer switch shall provide a relay contact signal prior to transfer or re-transfer. The time period before and after transfer shall be adjustable in a range of 0 to 60 seconds.
5. The control system shall be designed and prototype tested for operation in ambient temperatures from -40 degrees C to +60 degrees C (-40 to +140 degrees F). It shall be designed and tested to comply with the requirements of the noted voltage and RFI/EMI standards.

6. The control shall have optically isolated logic inputs, high isolation transformers for AC inputs and relays on all outputs, to provide optimum protection from line voltage surges, RFI and EMI.

7. The transfer switch network monitoring equipment, when supplied, shall be provided with a battery-based auxiliary power supply to allow monitoring of the transfer switch when both AC power sources are non-operational.

8. The indicator panel LEDs shall display:
 a. Which source the load is connected to (Source 1 or Source 2)
 b. Which source or sources are available
 c. When switch is not set for automatic operation, the control is disabled
 d. When the switch is in test/exercise mode

9. The indicator shall have pushbuttons that allow the operator to activate the following functions:
 a. Activate pre-programmed test sequence
 b. Override programmed delays, and immediately go to the next operation
 c. Reset the control by clearing any faults
 d. Test all of the LEDs by lighting them simultaneously

10. The alphanumeric digital display shall be vacuum fluorescent-type, clearly visible in both bright sunlight and no-light conditions over an angle of 120 degrees, and shall display the following:
 a. AC voltage for all phases, normal and emergency
 b. Source status: connected or not connected.

11. The display panel shall be password-protected, and allow the operator to view and make adjustments:
 a. Set nominal voltage and frequency for the transfer switch
 b. Adjust voltage and frequency sensor operation set points
 c. Set up time clock functions
 d. Set up load sequence functions
 e. Enable or disable control functions including program transition
 f. View real-time clock data, operation log (hours connected, times transferred, failures) and service history

G. Transfer Switch Control Panel: The transfer switch shall have a microprocessor-based control with a sealed membrane panel incorporating pushbuttons for operator-controlled functions, and LED lamps for system status indicators. Panel display and indicating lamps shall include permanent labels.

H. Control Functions: Functions managed by the control shall include:

1. Software adjustable time delays:
 a. Engine start (prevents nuisance genset starts in the event of momentary power fluctuation): 0 to 120 seconds (default 3 sec)
 b. Transfer normal to emergency (allows genset to stabilize before load is transferred): 0 to 120 seconds (default 3 sec)
 c. Re-transfer emergency to normal (allows utility to stabilize before load is transferred from genset): 0 to 30 minutes (default 3 sec)
 d. Engine cooldown: 0 to 30 minutes (default 10 min)
e. Programmed transition: 0 to 60 seconds (default 3 sec)

2. Undervoltage sensing: three-phase normal, three-phase emergency source.
3. Over-voltage sensing: three-phase normal, three-phase emergency source.
4. Over/under frequency sensing:
 a. Pickup: +/- 5 to +/-20% of nominal frequency (default 10%)
 b. Dropout: +/-1% beyond pickup (default 1%)
 c. Dropout time delay: 0.1 to 15.0 seconds (default 5 sec)
 d. Accurate to within +/- 0.05 Hz

5. Voltage imbalance sensing:
 a. Dropout: 2 to 10% (default 4%)
 b. Pickup: 90% of dropout
 c. Time delay: 2.0 to 20 seconds (default 5 sec)

6. Phase rotation sensing:
 a. Time delay: 100 msec

7. Loss of single-phase detection:
 a. Time delay: 100 msec

I. Control features shall include:

1. Programmable genset exerciser: A field-programmable control shall periodically start and run the generator with or without transferring the load for a preset time period, then re-transfer and shut down the generator after a preset cool-down period.
2. In event of a loss of power to the control, all control settings, real-time clock setting and the engine start-time delay setting will be retained.
3. The system continuously logs information including the number of hours each source has been connected to the load, the number of times transferred, and the total number of times each source has failed. An event recorder stores information, including time and date-stamp, for up to 50 events.
4. Re-Transfer Inhibit Switch: Inhibits automatic re-transfer control so automatic transfer switch will remain connected to emergency power source as long as it is available regardless of condition of normal source.
5. Transfer Inhibit Switch: Inhibits automatic transfer control so automatic transfer switch will remain connected to normal power source regardless of condition of emergency source.

J. Control Interface

1. Provide one set Form C auxiliary contacts on both sides, operated by transfer switch position, rated 10 amps 250 VAC.
2. The transfer switch shall be provided with a network communication card, and configured to allow network-based communication with the transfer switch and other network system components, including the generator set(s) provided for the Project.
3. Unassigned Auxiliary Contacts: Two normally open, 1-pole, double-throw contacts for each switch position, rated 10A at 240 VAC.

K. Engine Starting Contacts

1. One isolated and normally closed pair of contacts rated 10A at 32 VDC minimum.
2.4 REMOTE ANNUNCIATOR SYSTEM

A. Functional Description: Remote annunciator panel shall annunciate conditions for indicated transfer switches. Annunciation shall include the following:

1. Sources available, as defined by actual pickup and dropout settings of transfer-switch controls.
2. Switch position.
3. Switch in test mode.
4. Failure of communication link.

Annunciator Panel: LED-lamp type with audible signal and silencing switch.

5. Indicating Lights: Grouped for each transfer switch monitored.
6. Label each group, indicating transfer switch it monitors, location of switch, and identity of load it serves.
7. Switch in test mode.
8. Lamp Test: Push-to-test or lamp-test switch on front panel.

B. Malfunction of annunciator or communication link shall not affect functions of automatic transfer switch. In the event of failure of communication link, automatic transfer switch automatically reverts to stand-alone, self-contained operation.

C. Automatic transfer-switch sensing, controlling, or operating function shall not depend on remote panel for proper operation. The remote annunciation system shall not prevent transfer to the alternate source when the primary power source fails, nor prevent return to the primary source if the alternate source fails.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Floor-Mounting Switch: Anchor to floor by bolting.

1. Floor-mounted transfer switches (except drawout switches supported by wheeled carriages, which must be rolled out at floor level) shall be mounted on concrete bases complying with the following requirements:

 a. Concrete Bases: 4 inches (100 mm) high, reinforced, with chamfered edges. Extend base no more than 4 inches (100 mm) in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Division 26 Section "Hangers and Supports for Electrical Systems."

C. Annunciator Panel Mounting: Flush in wall, unless otherwise indicated.

D. Identify components according to Division 26 Section "Identification for Electrical Systems."

E. Set field-adjustable intervals and delays, relays, and engine exerciser clock.

F. Provide certification of IBC Seismic compliance.
3.2 CONNECTIONS

A. Wiring to Remote Components: Match type and number of cables and conductors to control and communication requirements of transfer switches as recommended by manufacturer. Increase raceway sizes at no additional cost to Owner if necessary to accommodate required wiring.

B. Field control connections shall be made on a common terminal block that is clearly and permanently labeled.

C. Transfer switch shall be provided with AL/CU mechanical lugs sized to accept the full output rating of the switch. Lugs shall be suitable for the number and size of conductors shown on the drawings.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 SOURCE QUALITY CONTROL

A. Prior to shipping, factory shall test and inspect components, assembled switches, and associated equipment to ensure proper operation.

B. Factory shall check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements.

C. Factory shall perform dielectric strength test complying with NEMA ICS 1.

3.4 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: The supplier of the transfer switch(es) and associated equipment shall inspect, test, and adjust components, assemblies, and equipment installations, including connections, and report results in writing.

B. Manufacturer’s representative shall perform tests and inspections and prepare test reports.

C. After installing equipment and after electrical circuitry has been energized, installer shall test for compliance with requirements.

1. Perform recommended installation tests as recommended in manufacturer’s installation and service manuals.

2. After energizing circuits, demonstrate interlocking sequence and operational function for each switch.

 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.

 b. Verify time-delay settings.

 c. Verify that the transfer switch is accurately metering AC voltage.

 d. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.

D. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 DEMONSTRATION

A. After generator set installation, the generator and transfer switch supplier shall conduct a complete operation, basic maintenance, and emergency service seminar covering generator set and transfer switch equipment, for up to 10 people employed by the Owner.

1. The seminar shall include instruction on operation of the transfer equipment, normal testing and exercise, adjustments to the control system, use of the PC based service and maintenance tools provided under this contract, and emergency operation procedures.

2. The class duration shall be at least 8 hours in length, and include practical operation with the installed equipment.

3.6 SERVICE AND SUPPORT

A. The manufacturer shall supply the Service Provider with a complete set of the service and maintenance software required to support the product. The software shall be provided at a training class attended by the user, to qualify the user in proper use of the software. The software shall have the following features and capabilities:

1. The software shall allow adjustment of all functions described herein, adjustment of operating levels of all protective functions, and programming of all optional functions in the controller. Adjustments shall be possible over modem from a facility that is remote from the generator set.

2. The software shall be capable of storing and displaying data for any function monitored by the generator set control. This data shall be available in common file formats, and on graphical “strip chart” displays.

3. The software shall automatically record all control operations and adjustments performed by any operator or software user, for tracking of changes to the control.

4. The software shall display all warning, shutdown, and status changes programmed into transfer switch controller. For each event, the control shall provide information on the nature of the event, when it last occurred, and how many times it has occurred.

END OF SECTION
SECTION 264313-SURGE PROTECTION DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes field-mounted (installed external to electrical equipment) SPDs for low-voltage (120 to 600 V) power distribution and control equipment.

B. The SPD shall provide TOV protection in addition to surge protection.

C. The requirements of this specification section supersede those in other specification sections.

1.3 DEFINITIONS

A. Inominal: Nominal discharge current.

B. MCOV: Maximum continuous operating voltage.

C. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.

D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.

E. OCPD: Overcurrent protective device.

F. SCCR: Short-circuit current rating.

G. SPD: Surge protective device.

H. TOV: Temporary overvoltage.

I. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Products will only be considered for approval if the request is accompanied with the appropriate SPD SPECIFIED PERFORMANCE COMPLIANCE FORM attachment(s) at the conclusion of this specification, fully executed with the required supporting documentation and signed by an authorized company representative. For any approval request to be considered complete, the required supporting documentation shall be provided for each model to be supplied.

B. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.
C. Documentation of Performance

1. Provide a copy of peak surge current test report, certifying that the SPD has been tested to, and survives, the peak surge current rating as specified.
2. Provide a copy of repetitive impulse test report, certifying that the SPD has been tested to, and survives, the number of repetitive impulses as specified.
3. Provide a copy of TOV performance testing.

D. Method and Equipment to be Used for Installed Testing (For Spec Section 3.2)

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
B. Sample Warranty. For manufacturer’s special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.
B. Copy of installed test report.

1.7 WARRANTY

A. Manufacturer’s Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within specified warranty period.

1. Warranty period: Twenty (20) years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS

A. SPD and Accessories. Listed and labeled as defined by NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Comply with UL 1449.
D. MCOV of the SPD shall be the nominal system voltage.

2.2 SERVICE ENTRANCE SUPPRESSOR

A. Manufacturer: Subject to compliance with requirements, provide product by one of the following:

2. Engineer Approved Equal.

a. Other manufacturers wishing to have specific products evaluated for equivalence shall provide ATTACHMENT 1 – SERVICE ENTRANCE SPD SPECIFIED PERFORMANCE COMPLIANCE FORM, fully executed with the required documentation, and signed by an authorized company representative, to demonstrate compliance with the performance requirements of this specification, no less than 10 days prior to the bid date.
b. Failure to provide the required documentation, for each model to be supplied, no less than 10 days prior to the bid date will disqualify products from consideration for this project.

B. SPDs: Comply with UL 1449 3rd Edition, Type 1.

1. SPDs with the following features and accessories.

a. Mounted external to electrical equipment.
b. Integral disconnect switch, where indicated on the drawings.
c. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
d. SPD monitoring shall include:

 1.) Indicator lights which display protection status.
 2.) Audible alarm with silence switch.
 3.) Form C contacts rated at 5 A and 250 V, one normally open and one normally closed for remote monitoring of protection status.
 4.) Component tracking and visual indication of percent protection remaining.
 5.) Surge counter which measures, discriminates between and indicates the level of surges.

 a.) Low level surge: 100 A to 500 A
 b.) Medium level surge: 500 A to 3000 A.
 c.) High level surge: > 3000 A.

 6.) Time/date stamp, duration and magnitude of the following events:

 a.) Sag
 b.) Swell
 c.) Voltage drop-outs
 d.) Power outages
 e.) THD
 f.) Frequency excursions
 g.) Volts (RMS, per phase)

 e. Information from monitoring shall be available through the facility network.

 1.) Via ModBus.
 2.) Via Ethernet.

 f. Integral Test Point with test data from factory provided for comparison. Information is provided in the form of suppressed voltage rating given by portable test set and written on a Diagnostic Signature Card which will be provided with the device. See section 3.2.

C. Comply with UL 1283.

D. Performance Ratings

1. Peak Surge Current Rating

 a. The peak surge current withstand rating per mode shall be as indicated in the table below, for the respective Service Entrance current rating.
 b. The peak surge current rating shall be the surge current at which the SPD was tested and which the SPD survived—with less than a 10% degradation in VPR. Testing
documentation shall be provided. (Due to present industry testing limitations, surge currents ratings greater than 200 kA will be tested at 200 kA.)

c. Peak surge current ratings which are the arithmetic sum of the ratings of individual MOVs in a given mode are not acceptable.

2. Repetitive Impulse Rating

a. The minimum repetitive impulse capacity (10 kA and 20 kV) of the SPD per mode shall not be less than as indicated in the table below, for the respective Service Entrance current rating.

b. The minimum repetitive impulse capacity shall be the number of impulses at which the SPD was tested and which the SPD survived—with less than a 10% degradation in VPR. Testing documentation shall be provided.

c. Minimum repetitive ratings which are derived by calculations are not acceptable.

<table>
<thead>
<tr>
<th>Service Entrance Current Rating</th>
<th>Surge Current Rating per Mode</th>
<th>Surge Current Rating per Phase</th>
<th>Repetitive Impulse Rating per Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Service Entrance</td>
<td>Multiple Service Entrances*</td>
<td>Single Service Entrance</td>
</tr>
<tr>
<td>3000 A (and above)</td>
<td>300 kA</td>
<td>200 kA</td>
<td>600 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>2500 A</td>
<td>250 kA</td>
<td>200 kA</td>
<td>500 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>2000 A</td>
<td>200 kA</td>
<td>150 kA</td>
<td>400 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,500</td>
</tr>
<tr>
<td>1600 A</td>
<td>150 kA</td>
<td>125 kA</td>
<td>300 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,000</td>
</tr>
<tr>
<td>1000 A - 1200 A</td>
<td>125 kA</td>
<td>125 kA</td>
<td>250 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,000</td>
</tr>
<tr>
<td>800 A</td>
<td>100 kA</td>
<td>80 kA</td>
<td>200 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,000</td>
</tr>
<tr>
<td>400 A - 600 A</td>
<td>80 kA</td>
<td>50 kA</td>
<td>160 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>200 A</td>
<td>50 kA</td>
<td>50 kA</td>
<td>100 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
</tbody>
</table>

*Multiple Service Entrances to be understood as one feed from a utility substation feeding multiple (i.e., more than one) utility transformers and/or utility meters for their respective Service Entrance sections.

3. Overvoltage Performance

a. The SPD shall be able to prevent common temporary overvoltages and high impedance faults from damaging the MOVs, increasing their longevity and ability to protect the critical load.
b. For limited and intermediate current TOVs (as specified in UL 1449 article 39.3 and 39.4) of 30 cycles, the voltage to the MOVs shall be reduced from 173% of nominal voltage, at the intermediate currents listed to the values below.

1.) 30 A: 140%
2.) 100 A: 150%
3.) 500 A: 160%
4.) 1000 A: 160%

c. The SPD shall be able to withstand multiple TOVs without damage to the MOVs by shunting current away from the MOVs during the overvoltage. SPD must have the ability to withstand greater than 100 TOVs with a source current of 30A, duration of 30 cycles, with 10 seconds between TOV events. Testing documentation shall be provided.

E. Protection modes and UL 1449 VPR for the applicable modes of grounded WYE/delta and high leg delta circuits shall not exceed the following.

1. For 480Y/277 V and 480 V delta systems:
 a. Line to Neutral: 1200 V
 b. Line to Ground: 1200 V
 c. Neutral to Ground: 1000 V
 d. Line to Line: 2000 V

2. For 208Y/120 V and 208 V delta systems:
 a. Line to Neutral: 700 V
 b. Line to Ground: 700 V
 c. Neutral to Ground: 700 V
 d. Line-to-Line 1200 V

F. SCCR: Equal to or exceed 200 kA.

G. Inominal rating: 20 kA.

2.3 SWITCHBOARD AND PANELBOARD SUPPRESSOR

A. Manufacturer: Subject to compliance with requirements, provide product by one of the following:

2. Engineer Approved Equal.

 a. Other manufacturers wishing to have specific products evaluated for equivalence shall provide ATTACHMENT 2 – SWITCHBOARD AND PANELBOARD SPD SPECIFIED PERFORMANCE COMPLIANCE FORM, fully executed with the required documentation, and signed, to demonstrate compliance with the performance requirements of this specification, no less than 10 days prior to the bid date.

 b. Failure to provide the required documentation, for each model to be supplied, no less than 10 days prior to the bid date will disqualify products from consideration for this project.

B. SPDs: Comply with UL 1449 3rd Edition, Type 1.

 1. SPDs with the following features and accessories.
a. Mounted external to electrical equipment.
b. Integral disconnect switch, where indicated on the drawings.
c. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
d. SPD monitoring shall include:

1.) Indicator lights which display protection status.
2.) Audible alarm with silence switch.
3.) Form C contacts rated at 5 A and 250 V, one normally open and one normally closed for remote monitoring of protection status.
4.) Component tracking and visual indication of percent protection remaining.
5.) Surge counter which measures, discriminates between and indicates the level of surges.

 a.) Low level surge: 100 A to 500 A
 b.) Medium level surge: 500 A to 3000 A
 c.) High level surge: > 3000 A

6.) Time/date stamp, duration and magnitude of the following events:

 a.) Sag
 b.) Swell
 c.) Voltage drop-outs
 d.) Power outages
 e.) THD
 f.) Frequency excursions
 g.) Volts (RMS, per phase)

e. Information from monitoring shall be available through the facility network.

 1.) Via ModBus.
 2.) Via Ethernet.

f. Integral Test Point with test data from factory provided for comparison. Information is provided in the form of suppressed voltage rating given by portable test set and written on a Diagnostic Signature Card which will be provided with the device. See section 3.2.

C. Comply with UL 1283.

D. Performance Ratings

1. Peak Surge Current Rating

 a. The peak surge current withstand rating per mode shall be as indicated in the table below, for the respective Service Entrance current rating.

 b. The peak surge current rating shall the surge current at which the SPD was tested and which the SPD survived—with less than a 10% degradation in VPR. Testing documentation shall be provided. (Due to present industry testing limitations, surge currents ratings greater than 200 kA will be tested at 200 kA.)

 c. Peak surge current ratings which are the arithmetic sum of the ratings of individual MOVs in a given mode are not acceptable.
2. Repetitive Impulse Rating

a. The minimum repetitive impulse capacity (10 kA and 20 kV) of the SPD per mode shall not be less than as indicated in the table below, for the respective Service Entrance current rating.

b. The minimum repetitive impulse capacity shall be the number of impulses at which the SPD was tested and which the SPD survived—with less than a 10% degradation in VPR. Testing documentation shall be provided.

c. Minimum repetitive ratings which are derived by calculations are not acceptable.

<table>
<thead>
<tr>
<th>Service Entrance Current Rating</th>
<th>Surge Current Rating per Mode</th>
<th>Surge Current Rating per Phase</th>
<th>Repetitive Impulse Rating per Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>With No Upstream SPD</td>
<td>With Upstream SPD</td>
<td>With No Upstream SPD</td>
<td>With Upstream SPD</td>
</tr>
<tr>
<td>3000 A (and above)</td>
<td>300 kA</td>
<td>150 kA</td>
<td>600 kA</td>
</tr>
<tr>
<td>2500 A</td>
<td>250 kA</td>
<td>125 kA</td>
<td>500 kA</td>
</tr>
<tr>
<td>2000 A</td>
<td>200 kA</td>
<td>100 kA</td>
<td>400 kA</td>
</tr>
<tr>
<td>1600 A</td>
<td>150 kA</td>
<td>80 kA</td>
<td>300 kA</td>
</tr>
<tr>
<td>1000 A - 1200 A</td>
<td>125 kA</td>
<td>80 kA</td>
<td>250 kA</td>
</tr>
<tr>
<td>800 A</td>
<td>100 kA</td>
<td>50 kA</td>
<td>200 kA</td>
</tr>
<tr>
<td>400 A - 600 A</td>
<td>80 kA</td>
<td>50 kA</td>
<td>160 kA</td>
</tr>
<tr>
<td>200 A</td>
<td>50 kA</td>
<td>50 kA</td>
<td>100 kA</td>
</tr>
</tbody>
</table>

E. Protection modes and UL 1449 VPR for the applicable modes of grounded WYE/delta and high leg delta circuits shall not exceed the following.

1. For 480Y/277 V and 480 V delta systems:

a. Line to Neutral: 1200 V
b. Line to Ground: 1200 V
c. Neutral to Ground: 1000 V
d. Line to Line: 2000 V

2. For 208Y/120 V and 208 V delta systems:

a. Line to Neutral: 700 V
b. Line to Ground: 700 V
c. Neutral to Ground: 700 V
d. Line-to-Line 1200 V

F. SCCR: Equal to or exceed 200 kA.

G. Inominal rating: 20 kA.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install SPD external to electrical equipment.

C. Install an OCPD or disconnect if required to comply with the UL listing of the SPD.

D. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer’s recommended lead length. Do not bond neutral and ground.

E. Use crimped connectors and splices only. Wire nuts are not acceptable.

F. Utilize the following conductors for connection of the device to the source, for all phase conductors, neutral (if applicable) and ground conductors.

1. Service Entrance Suppressor
 a. For Service Entrances 1200 A and above, utilize #1/0 conductors.
 b. For Service Entrances 200 A - 1000 A utilize Current Technology HPI-6Y low impedance cable assembly.

2. Switchboard and Panelboard Suppressor
 a. For Switchboards, 1200 A and above, utilize #2 AWG conductors.
 b. For Switchboards and Panelboards, 200 A - 1000 A utilize Current Technology HPI-6Y low impedance cable assembly.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.

1. Compare equipment nameplate data for compliance with Drawings and Specifications.
2. Inspect anchorage, alignment, grounding and clearances.
3. Verify that electrical wiring installation complies with manufacturer’s written installation requirements.
4. Testing: Perform the following field tests and inspections and prepare test reports:
 a. After installation of surge protection devices, but before electrical circuitry has been energized, test for compliance with requirements.
 b. Utilize a portable test set and test devices to confirm:
 1.) The suppressed voltage rating of the installed unit is within 10% of the suppressed voltage rating of the device when tested prior to shipment from the factory.
2.) The SPD is properly installed.
3.) The presence of an X₀ bond at the most proximal upstream separately derived source.

B. An SPD will be considered defective if it does not pass tests and inspections.
C. Repeat tests and inspection after replacement or repair of defective units.
D. Prepare test-result and inspection reports and submit them to the project engineer.

3.3 STARTUP SERVICE
A. Complete startup checks according to manufacturer’s written instructions.
B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests, and reconnect them immediately after the testing is completed.
C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION
A. Engage a factory authorized service representative to train Owner’s maintenance personnel to operate and maintain SPDs.

END OF SECTION
ATTACHMENT 1 – SERVICE ENTRANCE SPD SPECIFIED PERFORMANCE COMPLIANCE FORM

Required for all requests for approval for each model to be supplied.

<table>
<thead>
<tr>
<th>PERFORMANCE SPECIFICATION</th>
<th>SPEC. SECTION REFERENCE</th>
<th>SPECIFICATION REQUIREMENT</th>
<th>PROPOSED</th>
<th>CONFIRMING DOCUMENTATION REQUIRED</th>
<th>COMPLIANCE VERIFIED?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty</td>
<td>1.7 A. 1.</td>
<td>20 Years</td>
<td></td>
<td>Published Warranty Certificate</td>
<td></td>
</tr>
<tr>
<td>Tested Surge Current Capacity</td>
<td>2.2 D. 1.</td>
<td>As Per Drawings & Chart in Specification</td>
<td></td>
<td>Independent Test Report</td>
<td></td>
</tr>
<tr>
<td>Repetitive Impulse Capacity</td>
<td>2.2 D. 2.</td>
<td>As Per Drawings & Chart in Specification</td>
<td></td>
<td>Repetitive Test Report Summary</td>
<td></td>
</tr>
<tr>
<td>Overvoltage Protection</td>
<td>2.2 D. 3.</td>
<td>As Per Specification</td>
<td></td>
<td>Test Documentation Confirming Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Protection Rating(s)</td>
<td>2.2 E. 2.</td>
<td>120 V Systems:</td>
<td>L-N: _____</td>
<td>Page(s) from UL File Showing Voltage Protection Ratings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-N: 700 V,</td>
<td>L-N: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-G: 700 V,</td>
<td>L-G: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-G: 700 V,</td>
<td>N-G: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-L: 1200 V</td>
<td>L-L:_______</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Protection Rating(s)</td>
<td>2.2 E. 1.</td>
<td>277 V Systems:</td>
<td>L-N: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-N: 1200 V,</td>
<td>L-N: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-G: 1200 V,</td>
<td>L-G: _____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-G: 1000 V,</td>
<td>N-G:_____</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-L: 2000 V</td>
<td>L-L:_______</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Monitoring</td>
<td>2.2 B. 1. d. 4)</td>
<td>Indication of % Protection</td>
<td></td>
<td>Product Data Sheet for</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>2.2 B. 1. d. 5)</td>
<td>Count & Time & Date of: Surges -Low (100-500A) -Med. (500-3000A) -High (Over 3000A)</td>
<td>Monitoring System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Count of, and Time and Data Stamp and Magnitude and Duration Recording for:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 B. 1. d. 6)</td>
<td>Voltage drop-out Power outages THD excursions Frequency excursions Voltage excursions (RMS & per phase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Network Based Monitoring System</td>
<td>2.2 B. 1. e.</td>
<td>Information available through the facility network</td>
<td>Print Screen Copy of System Home Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Test Port</td>
<td>2.2 B. 1. f.</td>
<td>Integral Interface with Portable Test Set/Surge Generator</td>
<td>Product Data Sheet Showing Test Port Option</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed/Field Test Service after Installation</td>
<td>3.2 A. 4.</td>
<td>Confirm Proper Installation and Wiring to SPD and Provide Benchmark of Initial Performance</td>
<td>Provide Data Sheet(s) for Equipment Used to Perform Installed Testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature confirming the validity of the information given above:
ATTACHMENT 2 – SWITCHBOARD & PANELBOARD SPD SPECIFIED PERFORMANCE COMPLIANCE FORM

Required for all requests for approval for each model to be supplied.

<table>
<thead>
<tr>
<th>PERFORMANCE SPECIFICATION</th>
<th>SPEC. SECTION REFERENCE</th>
<th>SPECIFICATION REQUIREMENT</th>
<th>PROPOSED</th>
<th>CONFIRMING DOCUMENTATION REQUIRED</th>
<th>COMPLIANCE VERIFIED?</th>
<th>YES / NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty</td>
<td>1.7 A. 1.</td>
<td>15 Years</td>
<td></td>
<td>Published Warranty Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20 Years with Upstream SL3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested Surge Current Capacity</td>
<td>2.3 D. 1.</td>
<td>As Per Drawings & Chart in Specification</td>
<td></td>
<td>Independent Test Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive Impulse Capacity</td>
<td>2.3 D. 2.</td>
<td>As Per Drawings & Chart in Specification</td>
<td></td>
<td>Repetitive Test Report Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Protection Rating(s)</td>
<td>2.3 E. 2.</td>
<td>120 V Systems:</td>
<td></td>
<td></td>
<td>Page(s) from UL File Showing Voltage Protection Ratings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-N: 700 V,</td>
<td>L-N:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-G: 700 V,</td>
<td>L-G:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-G: 700 V,</td>
<td>N-G:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-L: 1200 V</td>
<td>L-L:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 E. 1.</td>
<td>277 V Systems:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-N: 1200 V,</td>
<td>L-N:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-G: 1200 V,</td>
<td>L-G:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-G: 1000 V,</td>
<td>N-G:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-L: 2000 V</td>
<td>L-L:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Monitoring System</td>
<td>2.3 B. 1. d. 4)</td>
<td>Indication of % Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 B. 1. d. 5)</td>
<td>Count & Time & Date of: Surges -Low (100-500A)</td>
<td></td>
<td>Product Data Sheet for Monitoring System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Network Based Monitoring System</td>
<td>2.3 B. 1. e.</td>
<td>Information available through the facility network</td>
<td>Print Screen Copy of System Home Page</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Test Port</td>
<td>2.3 B. 1. f.</td>
<td>Integral Interface with Portable Test Set/Surge Generator</td>
<td>Product Data Sheet Showing Test Port Option</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed/Field Test Service after Installation</td>
<td>3.2 A. 4.</td>
<td>Confirm Proper Installation and Wiring to SPD and Provide Benchmark of Initial Performance</td>
<td>Provide Data Sheet(s) for Equipment Used to Perform Installed Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature confirming the validity of the information given above: __
SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color Rendering Index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. LED: Light-emitting diode.
 F. Lumen: Measured output of lamp and luminaire, or both.
 G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 C. LEED Submittals:
 1. Comply with Section 01 3515 LEED Certification Procedures. Provide all information required on the LEED Submittal Cover Sheet included at the end of this Section.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Lighting luminaires.
2. Suspended ceiling components.
3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches (300 mm) of the plane of the luminaires.
4. Structural members to which equipment luminaires will be attached.
5. Initial access modules for acoustical tile, including size and locations.
6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Ceiling-mounted projectors.
7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer’s laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in
29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: 5 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified."

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Recessed Fixtures: Comply with NEMA LE 4.

C. CRI of minimum 80. CCT as indicated on lighting schedule.

D. Rated lamp life of 50,000 hours.

E. Dimming as indicated on lighting schedule.

F. Integral driver.

G. Nominal Operating Voltage: As indicated on lighting schedule.

2.3 PRODUCTS

A. Fixture basis of design is determined by lighting schedule on construction documents.

1. Equivalency of substitutions to products on lighting schedule shall be at the sole discretion of the Engineer.
2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions.
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

C. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.5 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

D. Flush-Mounted Luminaire Support:

1. Secured to outlet box.
2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
3. Trim ring flush with finished surface.

E. Wall-Mounted Luminaire Support:

1. Attached to structural members in walls.
2. Do not attach luminaires directly to gypsum board.

F. Ceiling-Mounted Luminaire Support:

1. Ceiling mount per manufacturer instructions.

G. Suspended Luminaire Support:

1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
3. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

H. Ceiling-Grid-Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Comply with requirements for startup specified in Section 260943.16 "Addressable-Fixture Lighting Controls."

B. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer’s authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION
SECTION 283100 - FIRE ALARM AND DETECTION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section of the specification includes the furnishing, installation, connection and testing of the microprocessor controlled, intelligent reporting fire alarm equipment required to form a complete, operative, coordinated system. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, Fire Alarm Control Panel (FACP), auxiliary control devices, annunciators, and wiring as shown on the drawings and specified herein.

A. The fire alarm system shall comply with requirements of NFPA Standard No. 72 for Local Protected Premises Signaling Systems except as modified and supplemented by this specification. The system field wiring shall be supervised either electrically or by software-directed polling of field devices.

1. The Secondary Power Source of the fire alarm control panel can provide at least 24 hours of backup power with the ability to sustain 5 minutes in alarm at the end of the backup period.

B. The fire alarm system shall be manufactured by an ISO 9001 certified company and meet the requirements of BS EN9001: ANSI/ASQC Q9001-1994.

C. The FACP and peripheral devices shall be manufactured 100% by a single U.S. manufacturer (or division thereof).

D. Underwriters Laboratories Inc. (UL) - USA:

UL 38 Manually Actuated Signaling Boxes
UL 217 Smoke Detectors, Single and Multiple Station
UL 228 Door Closers–Holders for Fire Protective Signaling Systems
UL 268 Smoke Detectors for Fire Protective Signaling Systems
UL 268A Smoke Detectors for Duct Applications
UL 346 Waterflow Indicators for Fire Protective Signaling Systems
UL 464 Audible Signaling Appliances
UL 521 Heat Detectors for Fire Protective Signaling Systems
UL 864 Standard for Control Units for Fire Protective Signaling Systems
UL 1481 Power Supplies for Fire Protective Signaling Systems
UL 1610 Central Station Burglar Alarm Units
UL 2075 Standard for Gas and Vapor Detectors and Sensors
UL 1638 Visual Signaling Appliances
UL 1971 Signaling Devices for Hearing Impaired
UL 2017 General-Purpose Signaling Devices and System

1. The FACP shall be ANSI 864, 10th Edition Listed. Systems listed to ANSI 864, 8th edition (or previous revisions) shall not be accepted.

E. The installing company shall employ NICET (minimum Level II Fire Alarm Technology) technicians on site to guide the final check-out and to ensure the systems integrity.
1.2 SCOPE:

A. An intelligent, microprocessor-controlled, fire alarm detection system shall be installed in accordance to the project specifications and drawings.

B. Basic Performance:

1. Initiation Device Circuits (IDC) shall be wired NFPA Style B (Class B) as part of an addressable device connected by the SLC Circuit.

2. When not wired directly from panel NAC circuits, Notification Appliance Circuits (NAC) shall be wired NFPA Style Y (Class B) as part of an addressable device connected by the SLC Circuit.

3. All circuits shall be power-limited, per UL864 requirements.

4. A single ground fault or open circuit on the system Signaling Line Circuit shall not cause system malfunction, loss of operating power or the ability to report an alarm.

5. Alarm signals arriving at the main FACP shall not be lost following a primary power failure or outage of any kind until the alarm signal is processed and recorded.

6. Panel shall meet requirements of UL-864 10th Edition

1.3 BASIC SYSTEM FUNCTIONAL OPERATION

A. When a fire alarm condition is detected and reported by one of the system initiating devices, the following functions shall immediately occur:

1. The system Alarm LED on the FACP shall flash.

2. A local sounder with the control panel shall sound.

3. A backlit 80-character LCD display on the FACP shall indicate all information associated with the fire alarm condition, including the type of alarm point and its location within the protected premises.

4. In response to a fire alarm condition, the system will process all control programming and activate all system outputs (alarm notification appliances and/or relays) associated with the point(s) in alarm.

5. In response to a fire alarm condition, the system will process all control programming and activate all system outputs (alarm notification appliances and/or relays) associated with the point(s) in alarm. Additionally, the system shall send events to a central alarm supervising station via either dial-up over PSTN, IP, Cellular, Internet, Intranet via PSDN or virtual private network.

1.4 SUBMITTALS

A. General:

1. Two copies of all submittals shall be submitted to the Architect/Engineer for review.
2. All references to manufacturer’s model numbers and other pertinent information herein is intended to establish minimum standards of performance, function and quality. Equivalent compatible UL-listed equipment from other manufacturers may be substituted for the specified equipment, if the minimum standards are met.

3. For equipment, other than that specified, the contractor shall supply proof that such substitute equipment equals or exceeds the features, functions, performance, and quality of the specified equipment.

B. Shop Drawings:

1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.

2. Include manufacturer’s name(s), model numbers, ratings, power requirements, equipment layout, device arrangement, complete wiring point-to-point diagrams, and conduit layouts.

3. Show annunciator layout, configurations, and terminations.

C. Manuals:

1. Submit simultaneously with the shop drawings, complete operating and maintenance manuals listing the manufacturer’s name(s), including technical data sheets.

2. Wiring diagrams shall indicate internal wiring for each device and the interconnections between the items of equipment.

3. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate the equipment and system.

D. Software Modifications

1. Provide the services of a qualified technician to perform all system software modifications, upgrades or changes. Response time of the technician to the site shall not exceed 4 hours.

2. Provide all hardware, software, programming tools and documentation necessary to modify the fire alarm system on site. Modification includes addition and deletion of devices, circuits, zones and changes to system operation and custom label changes for devices or zones. The system structure and software shall place no limit on the type or extent of software modifications on-site. Modification of software shall not require power-down of the system or loss of system fire protection while modifications are being made.

3. Provide firmware updates through USB thumb drive.

1.5 GUARANTY:

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of at least one (1) year from the date of acceptance. The full cost of maintenance, labor and materials required to correct any defect during this one year period, shall be included in the submittal bid.

1.6 MAINTENANCE:
A. Maintenance and testing shall be on a semi-annual schedule or as required by the local AHJ. A preventive maintenance schedule shall be provided by the contractor describing the protocol for preventive maintenance. The schedule shall include:

1. Systematic examination, adjustment and cleaning of all detectors, manual fire alarm stations, control panels, power supplies, relays, waterflow switches and all accessories of the fire alarm system.

2. Each circuit in the fire alarm system shall be tested semiannually.

3. Each smoke detector shall be tested in accordance with the requirements of NFPA 72 Chapter 10.

B. As part of the bid/proposal, include a quote for a maintenance contract to provide all maintenance, tests, and repairs described below. Include also a quote for unscheduled maintenance/repairs, including hourly rates for technicians trained on this equipment, and response travel costs for each year of the maintenance period. Submittals that do not identify all post contract maintenance costs will not be accepted. Rates and costs shall be valid for the period of five (5) years after expiration of the guaranty.

C. System maintenance is to be non-proprietary. When initial maintenance contract (if any) expires system to be maintainable by multiple factory authorized service providers.

1.7 1.6. POST CONTRACT EXPANSIONS:

A. The contractor shall have the ability to provide parts and labor to expand the system specified, if so requested, for a period of five (5) years from the date of acceptance.

B. As part of the submittal, include a quotation for all parts and material, and all installation and test labor as needed to increase the number of intelligent or addressable devices by ten percent (10%). This quotation shall include intelligent smoke detectors, CO detectors intelligent heat detectors, addressable manual stations, addressable beam detectors, addressable monitor modules and addressable control modules equal in number to one tenth of the number required to meet this specification (list actual quantity of each type).

C. The quotation shall include installation, test labor, and labor to reprogram the system for this 10% expansion. If additional FACP hardware is required, include the material and labor necessary to install this hardware.

D. Do not include cost of conduit or wire or the cost to install conduit or wire except for labor to make final connections at the FACP and at each intelligent addressable device. Do not include the cost of conventional peripherals or the cost of initiating devices or notification appliances connected to the addressable monitor/control modules.

E. Submittals that do not include this estimate of post contract expansion cost will not be accepted.

1.8 1.7. APPLICABLE STANDARDS AND SPECIFICATIONS:

The specifications and standards listed below form a part of this specification. The system shall fully comply with the latest issue of these standards, if applicable.
A. National Fire Protection Association (NFPA) - USA:

No. 13 Sprinkler Systems
No. 70 National Electric Code (NEC)
No. 72 National Fire Alarm Code
No. 101 Life Safety Code

B. The system and its components shall be Underwriters Laboratories, Inc. listed under the appropriate UL testing standard as listed herein for fire alarm applications and the installation shall be in compliance with the UL listing.

C. Local and State Building Codes.

D. All requirements of the Authority Having Jurisdiction (AHJ).

1.9 1.8. APPROVALS:

A. The system shall have proper listing and/or approval from the following nationally recognized agencies:

UL Underwriters Laboratories Inc (Ninth Edition)
FM Factory Mutual
MEA Material Equipment Acceptance (NYC)
CSFM California State Fire Marshal

CAN/ULC - S527-99 Standard for Control Units for Fire Alarm Systems

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIAL, GENERAL:

A. All equipment and components shall be new, and the manufacturer’s current model. The materials, appliances, equipment and devices shall be tested and listed by a nationally recognized approvals agency for use as part of a fire protective signaling system, meeting the National Fire Alarm Code.

B. All equipment and components shall be installed in strict compliance with manufacturers' recommendations. Consult the manufacturer’s installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation.

C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., detectors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

D. All equipment must be available "over the counter" through the Security Equipment Distributor (SED) market and can be installed by dealerships independent of the manufacturer.
2.2. CONDUIT AND WIRE:

A. Conduit:

1. Conduit shall be in accordance with The National Electrical Code (NEC), local and state requirements.

2. **All wiring shall be installed in conduit or raceway.** Conduit fill shall not exceed 40 percent of interior cross sectional area where three or more cables are contained within a single conduit.

3. Cable must be separated from any open conductors of power, or Class 1 circuits, and shall not be placed in any conduit, junction box or raceway containing these conductors, per NEC Article 760-29.

4. With the exception of telephone connections, wiring for 24 volt DC control, alarm notification, emergency communication and similar power-limited auxiliary functions may be run in the same conduit as initiating and signaling line circuits. All circuits shall be provided with transient suppression devices and the system shall be designed to permit simultaneous operation of all circuits without interference or loss of signals.

5. Conduit shall not enter the fire alarm control panel, or any other remotely mounted control panel equipment or backboxes, except where conduit entry is specified by the FACP manufacturer.

6. Conduit shall be 3/4 inch (19.1 mm) minimum.

B. Wire:

1. All fire alarm system wiring shall be new.

2. Wiring shall be in accordance with local, state and national codes (e.g., NEC Article 760) and as recommended by the manufacturer of the fire alarm system. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG (1.02 mm) for Initiating Device Circuits and Signaling Line Circuits, and 14 AWG (1.63 mm) for Notification Appliance Circuits.

3. All wire and cable shall be listed and/or approved by a recognized testing agency for use with a protective signaling system.

4. Wire and cable not installed in conduit shall have a fire resistance rating suitable for the installation as indicated in NEC 760 (e.g., FPLR).

5. Wiring used for the multiplex communication circuit (SLC) shall be twisted non-shielded and support a minimum wiring distance of 10,000 feet when sized at 12 AWG.

6. All field wiring shall be electrically supervised for open circuit and ground fault.

7. The fire alarm control panel shall be capable of T-tapping NFPA Style 4 (Class B) Signaling Line Circuits (SLCs). Systems which do not allow or have restrictions for the number of T-taps, length of T-taps etc., are not acceptable.
C. Terminal Boxes, Junction Boxes and Cabinets:
 All boxes and cabinets shall be UL listed for their use and purpose.

D. The fire alarm control panel shall be connected to a separate dedicated branch circuit, maximum 20 amperes. This circuit shall be labeled at the main power distribution panel as FIRE ALARM. Fire alarm control panel primary power wiring shall be 12 AWG. The control panel cabinet shall be grounded securely to either a cold water pipe or grounding rod. The control panel enclosure shall feature a quick removal chassis to facilitate rapid replacement of the FACP electronics.

1. The FACP shall be capable of coding Notification Appliance Circuits in March Time Code (120 PPM), Temporal (NFPA 72 A-2-2.2.2), and California Code. Main panel notification circuits (NACs 1 & 2) shall also automatically synchronize any of the following manufacturer’s notification appliances connected to them: System Sensor, Wheelock, and Gentex, with no need for additional synchronization modules.

2.3. MAIN FIRE ALARM CONTROL PANEL:

A. The FACP shall be a Fire-Lite Model ES-200X and shall contain a microprocessor-based Central Processing Unit (CPU). The CPU shall communicate with and control the following types of equipment used to make up the system: intelligent addressable smoke and thermal (heat) detectors, addressable modules, printer, annunciators, Digital Dialer and Ethernet Communicators and other system controlled devices. Ethernet communications shall be via a IPOTs card.

B. Operator Control

1. Acknowledge Switch:

 a. Activation of the control panel Acknowledge switch in response to new alarms and/or troubles shall silence the local panel piezo electric signal and change the alarm and trouble LEDs from flashing mode to steady-ON mode. If multiple alarm or trouble conditions exist, depression of this switch shall advance the 80-character LCD display to the next alarm or trouble condition.

 b. Depression of the Acknowledge switch shall also silence all remote annunciator piezo sounders.

2. Alarm Silence Switch:

 Activation of the alarm silence switch shall cause all programmed alarm notification appliances and relays to return to the normal condition after an alarm condition. The selection of notification circuits and relays that are silence able by this switch shall be fully field programmable within the confines of all applicable standards. The FACP software shall include silence inhibit and auto-silence timers.

3. Alarm Activate (Drill) Switch:

 The Alarm Activate switch shall activate all notification appliance circuits. The drill function shall latch until the panel is silenced or reset.

4. System Reset Switch:
Activation of the System Reset switch shall cause all electronically-latched initiating devices, appliances or software zones, as well as all associated output devices and circuits, to return to their normal condition.

5. Lamp Test:

The System RESET switch shall also function as a Lamp Test switch and shall activate all system LEDs and light each segment of the liquid crystal display.

6. Programmable Buttons:

The system should have at least 4 programmable function keys for quick zone and NAC disable during maintenance.

C. System Capacity and General Operation

1. The control panel shall provide, or be capable of, expansion to 50 intelligent/addressable devices of any type, detector or module.

2. The control panel shall include two Form-C programmable relays, which can be used for Alarm, and Supervisory and a fixed Trouble relay rated at a minimum of 2.5 amps @ 30 VDC. It shall also include 2 programmable Notification Appliance Circuits (NACs) capable of being wired as NFPA Style Y (Class B) or NFPA Style Z (Class A). Either programmable Notification circuit shall also provide auxiliary power when programmed as such.

3. The fire alarm control panel shall include an operator interface control and annunciation panel that shall include a backlit Liquid Crystal Display (LCD), individual color-coded system status LEDs, and an alphanumeric keypad for the field programming and control of the fire alarm system.

4. All programming or editing of the existing program in the system shall be achieved without special equipment and without interrupting the alarm monitoring functions of the fire alarm control panel. The system shall be fully programmable, configurable, and expandable in the field without the need for special tools, PROM programmers or PC based programmers. It shall not require replacement of memory ICs to facilitate programming changes. The control unit will support the ability to upgrade its operating program using FLASH memory technology. The unit shall provide the user with the ability to program from either the included keypad or a USB drive programmed from FS-Tools.

5. The system shall allow the programming of any input to activate any output or group of outputs. Systems which have limited programming (such as general alarm), have complicated programming (such as a diode matrix), or REQUIRE a laptop personal computer is not considered suitable substitutes.

6. The FACP shall provide the following features:

a. Drift compensation to extend detector accuracy over life. Drift compensation shall also include a smoothing feature, allowing transient noise signals to be filtered out.

b. Detector sensitivity test, meeting requirements of NFPA 72, Maintenance alert, with
two levels (maintenance alert/maintenance urgent), to warn of excessive smoke
detector dirt or dust accumulation.

c. The ability to display or print system reports.

d. Alarm verification, with counters and a trouble indication to alert maintenance
personnel when a detector enters verification an excessive number of times.

e. Positive Alarm Sequence (PAS presignal), meeting NFPA 72 requirements.

g. Non-alarm points for general (non-fire) control.

h. Periodic detector test, conducted automatically by the software.

i. Walk test, with a check for two detectors set to same address.

j. Universal end of line resistor for NACs and remote sync output

k. Temporal-4 NAC coding for CO alarms.

l. Built in Class-A capability for all 4 NACs

m. Local upload/download using USB drive.

n. Flash firmware with USB thumb drive.

7. The FACP shall be capable of coding Notification Appliance Circuits in March Time
Code (120 PPM), Temporal (NFPA 72) for fire alarm and CO alarm, and California Code. Main panel
notification circuits (NACs 1 & 2) shall also automatically synchronize and be programmable for any of the
following manufacturer’s notification appliances connected to them: System Sensor, Wheelock, Gentex,
with no need for additional synchronization modules

B. Display

1. The display shall provide all the controls and indicators used by the system operator and
may also be used to program all system operational parameters.

2. The display shall include status information and custom alphanumeric labels for all
intelligent detectors, addressable modules, internal panel circuits, and software zones.

3. The display shall contain an alphanumeric, text-type display and dedicated LEDs for the
annunciation of AC POWER, FIRE ALARM, SUPERVISORY, TROUBLE, , and
ALARM SILENCED, CO Alarm conditions.

4. The display keypad shall be part of the standard system and have the capability to
command all system functions, entry of any alphabetic or numeric information, and field
programming. Two different password levels shall be provided to prevent unauthorized
system control or programming.

5. The display shall include the following operator control switches:
ACKNOWLEDGE/STEP, ALARM SILENCE, DRILL (alarm activate), and SYSTEM
RESET.

C. Signaling Line Circuit (SLC)

1. The SLC interface shall provide power to and communicate with up to 50 devices of any type including: intelligent detectors (ionization, photoelectric, CO or thermal) addressable pull stations, addressable Beam Detectors, intelligent modules (monitor or control). Each SLC shall be capable of NFPA 72 Style 4, Style 6, or Style 7 (Class A or B) wiring.

2. The CPU shall receive information from all intelligent detectors to be processed to determine whether normal, alarm, pre-alarm, or trouble conditions exist for each detector. The software shall automatically compensate for the accumulation of dust in each detector up to allowable limits. The information shall also be used for automatic detector testing and for the determination of detector maintenance conditions.

3. The detector software shall meet NFPA 72, Chapter 10 requirements and be certified by UL as a calibrated sensitivity test instrument.

D. Serial Interfaces

1. An annunciator RS-485 bus shall be used to connect an UL-Listed 80-column printer anywhere within the 6,000 range of the serial bus connection. The printer shall communicate with the control panel using an RS-485 converter/interface complying with Electrical Industries Association standard EIA-232D. Power to the printer shall be 120 VAC @ 60 Hz. The interface shall contain both a 9-pin serial and standard centronics parallel connector. Either shall be capable of connection to a serial or parallel printer. The bus shall also provide connection to additional addressable modules supporting remote 80 character LCD text annunciators that mimic the standard panel display and controls. Said annunciators shall support remote acknowledge, silence, drill and reset functions and shall be enabled via a keyswitch. The bus shall also provide connection to addressable modules supporting up to 40 LEDs for use with a graphic annunciator.

E. The control panel will have the capability of Reverse Polarity Transmission or connection to a Municipal Box for compliance with applicable NFPA standards.

F. Internet Protocol Over Telephone Service (IPOTS) is an interface for communicating digital information between a fire alarm control panel and a UL-Listed central station. The IPOTS module is capable of transmitting contact ID formatted alarms to a central station equipped with a compatible IP receiver via Ethernet over a private or public WAN/LAN, Intranet or Ethernet.

1. The IPOTS communicator shall be an integral module component of the fire alarm control panel enclosure.

2. The IPOTS communicator shall be completely field-programmable locally from a USB port or via Ethernet, Telnet and through AlarmNet.

3. The IPOTS communicator shall be capable of transmitting events in contact ID format.
4. Communication shall include vital system status such as:

- Independent Zone (Alarm, trouble, non-alarm, supervisory)
- Independent Addressable Device Status
- AC (Mains) Power Loss
- Low Battery and Earth Fault
- System Off Normal
- 12 and 24 Hour Test Signal
- Abnormal Test Signal (per UL requirements)
- EIA-485 Communications Failure
- IP Line Failure

4. The IPOTS communicator shall support independent zone/point reporting. In this format, the IPOTS shall support the transmission of addressable points within the system. This format shall enable the central station to have exact details concerning the location of the fire for emergency response. The communication over IP / cellular shall be transparent to the panels normal operation over phone lines.

7. The IPOTS communicator shall utilize a supervisory heart beat signal of no less than once every 90 seconds insuring multiplexed level line supervision. Loss of Internet or Intranet connectivity shall be reported in no more than 200 seconds. This IPOTS communicator can also can program communication in supervisor according to all NFPA guidelines. Alarm events shall be transmitted to a central station in no less than 90 seconds from time of initiation to time of notification.

G. Enclosures:

1. The control panel shall be housed in a UL-listed cabinet suitable for surface or semi-flush mounting. The cabinet and front shall be corrosion protected and painted red via the powder coat method with manufacturer’s standard finish.

2. The back box and door shall be constructed of steel with provisions for electrical conduit connections into the sides and top.

3. The door shall provide a key lock and shall provide for the viewing of all indicators.

4. The cabinet shall accept a chassis containing the PCB and to assist in quick replacement of all the electronics including power supply shall require no more than two bolts to secure the panel to the enclosure back box.

5. The cabinet shall also support a mechanical secured optional dress panel limiting access to the internals of the panel.

H. Field Charging Power Supply:

The FCPS is a device designed for use as either a remote 24-volt power supply or as a booster for powering Notification Appliances.

1. The FCPS shall offer up to 8.0 amps (6.0 amps continuous) of regulated 24 volt power. It shall include an integral charger designed to charge 18.0 amp hour batteries.

2. The Field Charging Power Supply shall have two input triggers. The input trigger shall be a Notification Appliance Circuit (from the fire alarm control panel) or a control relay. Four NAC outputs, wired NFPA Style Y or Z, shall be available for connection to the
Notice devices.

3. The FCPS shall optionally provide synchronization of all connected strobes or horn strobe combinations when System Sensor, Wheelock or Gentex devices are installed.

4. The FCPS shall function as a sync follower as well as a sync generator.

5. The FCPS shall include a surface mount backbox.

6. The Field Charging Power Supply shall include the ability to delay the reporting of an AC fail condition per NFPA requirements.

7. The FCPS shall provide 24 VDC regulated and power-limited circuitry per UL standards. Should this be updated to latest UL standard?

I. Power Supply:

1. The main power supply for the fire alarm control panel shall provide up to 3.0 amps For ES-50X, up to 6.0 amps for ES-200 available power for the control panel and peripheral devices.

2. Provisions will be made to allow the audio-visual power to be increased as required by adding modular expansion audio-visual power supplies.

3. Positive-Temperature-Coefficient (PTC) thermistors, circuit breakers, or other over-current protection shall be provided on all power outputs. The power supply shall provide an integral battery charger or may be used with an external battery and charger systems. Battery arrangement may be configured in the field.

4. The main power supply shall continuously monitor all field wires for earth ground conditions.

5. The main power supply shall operate on 120 VAC, 60 Hz, and shall provide all necessary power for the FACP.

J. Programmable Electronic Sounders:

1. Electronic sounders shall operate on 24 VDC nominal.

2. Electronic sounders shall be field programmable without the use of special tools, to provide slow whoop, continuous, or interrupted tones with an output sound level of at least 90 dBA measured at 10 feet from the device.

3. Electronic sounders shall be flush or surface mounted as shown on plans.

K. Strobe lights shall meet the requirements of the ADA, UL Standard 1971 and shall meet the following criteria:

1. The maximum pulse duration shall be 2/10 of one second.

2. Strobe intensity shall meet the requirements of UL 1971.

3. The flash rate shall meet the requirements of UL 1971.
L. Audible/Visual Combination Devices:

1. Shall meet the applicable requirements of Section A listed above for audibility.
2. Shall meet the requirements of Section B listed above for visibility.

M. Specific System Operations

1. Alarm Verification: Each of the intelligent addressable smoke detectors in the system may be independently programmed for verification of alarm signals. The alarm verification time period shall not exceed 2 minutes.

2. Point Disable: Any addressable device or conventional circuit in the system may be enabled or disabled through the system keypad.

3. Point Read: The system shall be able to display the following point status diagnostic functions:
 a. Device status
 b. Device type
 c. Custom device label
 d. Device zone assignments

4. System Status Reports: Upon command from an operator of the system, a status report will be generated and printed, listing all system status.

5. System History Recording and Reporting: The fire alarm control panel shall contain a history buffer that will be capable of storing up to 500 events. Each of these activations will be stored and time and date stamped with the actual time of the activation. The contents of the history buffer may be manually reviewed, one event at a time, or printed in its entirety. The history buffer shall use non-volatile memory. Systems that use volatile memory for history storage are not acceptable substitutes.

6. Automatic Detector Maintenance Alert: The fire alarm control panel shall automatically interrogate each intelligent detector and shall analyze the detector responses over a period of time. If any intelligent detector in the system responds with a reading that is above or below normal limits, then the system will enter the trouble mode, and the particular detector will be annunciated on the system display. This feature shall in no way inhibit the receipt of alarm conditions in the system, nor shall it require any special hardware, special tools or computer expertise to perform.

7. Pre-Alarm Function: The system shall provide two levels of pre-alarm warning to give advance notice of a possible fire situation. Both pre-alarm levels shall be fully field adjustable. The first level shall give an audible indication at the panel. The second level shall give an audible indication and may also activate control relays. The system shall also have the ability to activate local detector sounder bases at the pre-alarm level, to assist in avoiding nuisance alarms.

8. The fire alarm control panel shall include Silent and Audible Walk Test functions – Silent and Audible. It shall include the ability to test initiating device circuits and Notification Appliance Circuits from the field without returning to the panel to reset the system. The operation shall be as follows:
a. The Silent Walk Test will not sound NACs but will store the Walk Test information in History for later viewing.

b. Alarming an initiating device shall activate programmed outputs, which are selected to participate in Walk Test.

c. Introducing a trouble into the initiating device shall activate the programmed outputs.

d. Walk Test shall be selectable on a per device/circuit basis. All devices and circuits which are not selected for Walk Test shall continue to provide fire protection and if an alarm is detected, will exit Walk Test and activate all programmed alarm functions.

e. All devices tested in walk test shall be recorded in the history buffer.

9. Waterflow Operation: An alarm from a waterflow detection device shall activate the appropriate alarm message on the control panel display; turn on all programmed Notification Appliance Circuits and shall not be affected by the Signal Silence switch.

10. Supervisory Operation: An alarm from a supervisory device shall cause the appropriate indication on the control panel display, light a common supervisory LED, but will not cause the system to enter the trouble mode.

11. Signal Silence Operation: The FACP shall have the ability to program each output circuit (notification circuit or relay) to deactivate upon depression of the Signal Silence switch.

12. Non-Alarm Input Operation: Any addressable initiating device in the system may be used as a non-alarm input to monitor normally open contact type devices. Non-alarm functions are a lower priority than fire alarm initiating devices.

13. Programmable functionality: Programmable buttons F1, F2, F3, F4 to allow simple routine maintenance tasks be programmed.

14. Detection of unprogrammed devices: The FACP will automatically detect and report unprogrammed SLC devices to ensure all devices are recognized.

2.4. SYSTEM COMPONENTS:

A. Addressable Pull Box (manual station)

1. Addressable pull boxes shall, on command from the control panel, send data to the panel representing the state of the manual switch and the addressable communication module status. They shall use a key operated test-reset lock, and shall be designed so that after actual emergency operation, they cannot be restored to normal use except by the use of a key.

2. All operated stations shall have a positive, visual indication of operation and utilize a key type reset.

3. Manual pull stations shall be constructed of Lexan with clearly visible operating
instructions provided on the cover. The word FIRE shall appear on the front of the stations in raised letters, 1.75 inches (44 mm) or larger.

B. Intelligent Multi-Sensing Detector

1. The intelligent detector shall be an addressable device which is capable of detecting multiple threats by employing photoelectric and thermal technologies in a single unit. This detector shall utilize advanced electronics which react to slow smoldering fires (photoelectric) and heat (thermal) all within a single sensing device.

2. The multi-detector shall include two LEDs for 360-degree viewing.

3. Automatically adjusts sensitivity levels without the need for operator intervention or programming. Sensitivity increases with heat.

C. Intelligent Photoelectric Smoke Detector

1. The detectors shall use the photoelectric (light-scattering) principal to measure smoke density and shall, on command from the control panel, send data to the panel representing the analog level of smoke density.

2. The detectors shall be ceiling-mounted and available in an alternate model with an integral fixed 135-degree heat-sensing element.

3. Each detector shall contain a remote LED output and a built-in test switch.

4. Detector shall be provided on a twist-lock base.

5. It shall be possible to perform a calibrated sensitivity and performance test on the detector without the need for the generation of smoke. The test method shall test all detector circuits.

6. A visual indication of an alarm shall be provided by dual latching Light Emitting Diodes (LEDs), on the detector, which may be seen from ground level over 360 degrees. These LEDs shall periodically flash to indicate that the detector is in communication with the control panel.

7. The detector shall not go into alarm when exposed to air velocities of up to 1500 feet per minute (fpm).

8. The detector screen and cover assembly shall be easily removable for field cleaning of the detector chamber.

9. All field wire connections shall be made to the base through the use of a clamping plate and screw.

E. Projected Addressable Beam Detector

1. The projected beam type shall be a 4-wire 24 VDC intelligent, addressable projected beam smoke detector device.

2. The detector shall be listed to UL 268 and shall consist of a single transmitter\receiver
3. The detector shall operate in either a short range (16'- 230') or long range (16' - 328') when used with an extender module.

4. The temperature range of the device shall be -22 degrees F to 131 degrees F.

5. The detector shall feature an optical sight and 2-digit signal strength meter to ensure proper alignment of unit without need of special tools.

6. The unit shall be both ceiling and wall mountable.

7. The detector shall have the ability to be tested using calibrated test filters or magnet-activated remote test station.

8. The detector shall have four standard sensitivity selections along with two automatic self-adjusting settings. When either of the two automatic settings is selected the detector will automatically adjust its sensitivity using advanced software algorithms to select the optimum sensitivity for the specific environment.

F. Intelligent Ionization Smoke Detector

1. The detectors shall use the dual-chamber ionization principal to measure products of combustion and shall, on command from the control panel, send data to the panel representing the analog level of products of combustion.

G. Intelligent Thermal Detectors

1. Thermal detectors shall be intelligent addressable devices rated at 135 degrees Fahrenheit (58 degrees Celsius) and have a rate-of-rise element rated at 15 degrees F (9.4 degrees C) per minute. It shall connect via two wires to the fire alarm control panel signaling line circuit.

H. Multicriteria Fire/CO Detectors

1. Fire detector combines four separate sensing elements in one unit (smoke, CO, light/flame, and heat) to sense multiple components of a fire with programmable response.

I. Intelligent Duct Smoke Detector

1. The smoke detector housing shall accommodate either an intelligent ionization detector or an intelligent photoelectric detector, of that provides continuous analog monitoring and alarm verification from the panel.

2. When sufficient smoke is sensed, an alarm signal is initiated at the FACP, and appropriate action taken to change over air handling systems to help prevent the rapid distribution of toxic smoke and fire gases throughout the areas served by the duct system.

J. Addressable Dry Contact Monitor Module

1. Addressable monitor modules shall be provided to connect one supervised IDC zone of...
conventional alarm initiating devices (any normally open dry contact device) to one of the fire alarm control panel SLCs.

2. The monitor module shall mount in a 4-inch square (101.6 mm square), 2-1/8 inch (54 mm) deep electrical box.

3. The IDC zone shall be suitable for Style D or Style B operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.

4. For difficult to reach areas, the monitor module shall be available in a miniature package and shall be no larger than 2-3/4 inch (70 mm) x 1-1/4 inch (31.7 mm) x 1/2 inch (12.7 mm). This version need not include Style D or an LED.

K. Two-Wire Detector Monitoring

1. Means shall be provided for the monitoring of conventional Initiating Device Circuits populated with 2-wire smoke detectors as well as normally-open contact alarm initiating devices (pull stations, heat detectors, etc).

2. Each IDC of conventional devices will be monitored as a distinct address on the polling circuit by an addressable module. The module will supervise the IDC for alarms and circuit integrity (opens).

3. The monitoring module will be compatible, and listed as such, with all devices on the supervised circuit.

4. The IDC zone may be wired for Style D or Style B (Class A or B) operation. An LED shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel.

5. The monitoring module shall be capable of mounting in a 4-inch square (101.6 mm square), 2-1/8 inch (54 mm) deep electrical box or in an surface mount backbox.

L. Addressable Control Relay Module

1. Addressable control relay modules shall be provided to control the operation of fan shutdown and other auxiliary control functions.

2. The control module shall mount in a standard 4-inch square, 2-1/8 inch deep electrical box, or to a surface mounted backbox.

3. The control relay module will provide a dry contact, Form-C relay. The relay coil shall be magnetically latched to reduce wiring connection requirements, and to insure that 100% of all auxiliary relays may be energized at the same time on the same pair of wires.

4. The control relay module shall be suitable for pilot duty applications and rated for a minimum of 0.6 amps at 30 VDC.

M. Six Output Addressable Control Relay Module

1. Up to 6 Addressable intelligent control relay modules combined on one circuit board
shall be provided to control the operation of fan shutdown and other auxiliary control functions.

2. Using rotary address switches, the first module shall be addressed from 01 to 45 while the remaining modules shall be automatically assigned to the next five higher addresses. Note, binary dip switches for setting address are not acceptable.

3. Provision shall be included for disabling a maximum of three unused modules.

4. A single isolated set of dry relay form C contacts shall be provided for each of the 6 module addresses, which shall be capable of being wired for either a normally-open or normally-closed operation.

5. The module shall allow an addressable control panel to switch these contacts on command.

6. The module shall contain removable plug in terminal blocks capable of supporting 12 AWG to 18 AWG wire.

7. The control relays mounted on the module shall be suitable for pilot duty applications and rated for a maximum of 3.0 amps at 30 VDC, resistive, non-coded and 2.0 amps at 30 VDC maximum, resistive, coded.

N. Six-Zone Interface Module

1. A six zone interface module shall be provided as an interface between the addressable panel and two-wire conventional detection zones.

2. A common SLC input shall be used for all modules, and the initiating device circuits shall share a common external supervisory supply and ground.

3. The first address on the interface module shall be addressed from 01 to 45 while the remaining modules are automatically assigned to the next five higher addresses.

4. Address shall be set using decimal encoded rotary address switches. Binary address switches are not acceptable.

5. Provision shall be included for disabling a maximum of two unused addresses of the six available.

6. All two-wire detectors being monitored shall be two-wire compatibility listed with the six zone input module.

7. The six zone input module shall transmit the status of a zone of two-wire detectors to the fire alarm control panel. Status shall be reported as normal, open or alarm.

8. Removable plug-in terminals shall be provided capable of accepting from 18 AWG up to 12 AWG wire.

O. Multiple Two-Wire Detector Monitoring
1. A single multi input module shall be provided for the monitoring of up to 10 conventional Initiating Device Circuits populated with 2-wire smoke detectors as well as normally-open contact alarm initiating devices (pull stations, heat detectors, etc).

2. Each IDC of conventional devices will be monitored as a distinct address on the polling circuit by an addressable point. The module will supervise the IDC for alarms and circuit integrity (opens).

3. The first address on the 10 input boards shall be set from 01 to 40 and the remaining module addresses shall be automatically assigned to the next nine higher addresses.

4. Provision shall be included for disabling a maximum of two unused addresses.

5. The supervised state (normal, open, or short) of the monitored device shall be sent back to the panel. A common SLC input shall be used for all modules, and the initiating device loops shall share a common supervisory supply and ground.

6. The IDC zone may be wired for Style D or Style B (Class A or B) operation. A green LED for each circuit shall be provided that shall flash under normal conditions, indicating that the monitor module is operational and in regular communication with the control panel. LEDs shall latch on when a circuit is in alarm.

P. Isolator Module

1. Isolator modules shall be provided to automatically isolate wire-to-wire short circuits on an SLC Style 6 (Class A) or Style 4 (Class B branch). The isolator module shall limit the number of modules or detectors that may be rendered inoperative by a short circuit fault on the SLC loop segment or branch. At least one isolator module shall be provided for each floor or protected zone of the building.

2. If a wire-to-wire short occurs, the isolator module shall automatically open-circuit (disconnect) the SLC. When the short circuit condition is corrected, the isolator module shall automatically reconnect the isolated section.

3. The isolator module shall not require any address-setting, and its operations shall be totally automatic. It shall not be necessary to replace or reset an isolator module after its normal operation.

4. The isolator module shall mount in a standard 4-inch (101.6 mm) deep electrical box or in a surface mounted backbox. It shall provide a single LED that shall flash to indicate that the isolator is operational and shall illuminate steadily to indicate that a short circuit condition has been detected and isolated.

Q. Serially Connected Graphic LED driver module

1. An LED driver module shall communicate with the fire alarm control panel via a two wire EIA 485 (multi-drop) communications circuit.

2. The annunciator shall require no more than two wires for operation and two wires for power. Annunciation shall include Outputs for up to 40 LEDs.
 a. Up to 8 total devices of any kind, LCD, printer gateway, LED, Relay or I/O module may be installed on the ANN-BUS.
R. Alphanumeric LCD Type Annunciator:

1. The alphanumeric display annunciator shall be a supervised, remotely located back-lit eighty (80) characters LCD display for alarm annunciation in clear English text.
2. The LCD annunciator shall display all alarm and trouble conditions in the system.
3. An audible indication of alarm shall be integral to the alphanumeric display.
4. The display shall be UL listed for fire alarm application.
5. It shall be possible to connect up to 8 LCD displays and be capable of wiring distances up to 6,000 feet from the control panel.
6. The annunciator shall connect to a separate, dedicated "terminal mode" EIA-RS-485 interface using two-wire loop connection and 2 wires for power. Each terminal mode LCD display shall mimic the main control panel.

S. Field Wiring Terminal Blocks

For ease of connection for heavy solid gage wire, all panel I/O wiring terminal blocks shall be screw type barrier strips and have sufficient capacity for #18 to #12 AWG wire.

2.5. SYSTEM COMPONENTS - ADDRESSABLE DEVICES

A. Addressable Devices - General

1. Addressable devices shall employ the simple-to-set decade addressing scheme. Addressable devices which use a binary-coded address setting method, such as a DIP switch, are not an allowable substitute.

2. Detectors shall be addressable and intelligent, and shall connect with two wires to the fire alarm control panel signaling line circuits.

3. Addressable smoke and thermal (heat) detectors shall provide dual alarm and power/polling LEDs. Both LEDs shall flash under normal conditions, indicating that the detector is operational and in regular communication with the control panel, and both LEDs shall be placed into steady illumination by the control panel, indicating that an alarm condition has been detected. An output connection shall also be provided in the base to connect an external remote alarm LED.

4. Using software in the FACP, detectors shall automatically compensate for dust accumulation and other slow environmental changes that may affect their performance. The detectors shall be listed by UL as meeting the calibrated sensitivity test requirements of NFPA Standard 72, Chapter 10.

5. Detectors shall be ceiling-mount and shall include a separate twist-lock base with tamper proof feature. Base options shall include a base with a built-in (local) sounder rated for a minimum of 85 DBA, a relay base and an isolator base designed for Style 7 applications.

6. Detectors shall provide a test means whereby they will simulate an alarm condition and
report that condition to the control panel.

7. Detectors shall also store an internal identifying type code that the control panel shall use to identify the type of device (ION, PHOTO, THERMAL, CO).

8. Detectors shall provide address-setting means using decimal switches.

2.6. BATTERIES:

A. Upon loss of Primary (AC) power to the control panel, the batteries shall have sufficient capacity to power the fire alarm system for required standby time (24 or 60 hours) followed by 5 minutes of alarm.

B. The batteries are to be completely maintenance free. No liquids are required. Fluid level checks for refilling, spills, and leakage shall not be required.

C. If necessary to meet standby requirements, external battery/charger systems may be used.

PART 3 - EXECUTION

3.1. INSTALLATION:

A. Installation shall be in accordance with the NEC, NFPA 72, local and state codes, as shown on the drawings, and as recommended by the major equipment manufacturer.

B. All conduit, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas. Smoke detectors shall not be installed prior to the system programming and test period. If construction is ongoing during this period, measures shall be taken to protect smoke detectors from contamination and physical damage.

C. All fire detection and alarm system devices, control panels and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas.

D. Manual pull stations shall be suitable for surface mounting or semi-flush mounting as shown on the plans, and shall be installed not less than 42 inches (1067 mm), nor more than 48 inches (122 mm) above the finished floor.

3.2. TEST:

The service of a competent, NICET level II technician shall be provided to technically supervise and participate during all of the adjustments and tests for the system. All testing shall be in accordance with NFPA 72, Chapter 10.

A. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.

B. Close each sprinkler system flow valve and verify proper supervisory alarm at the FACP.

C. Verify activation of all waterflow switches.
D. Open initiating device circuits and verify that the trouble signal actuates.

E. Open and short signaling line circuits and verify that the trouble signal actuates.

F. Open and short notification appliance circuits and verify that trouble signal actuates.

G. Ground all circuits and verify response of trouble signals.

H. Check presence and audibility of tone at all alarm notification devices.

I. Check installation, supervision, and operation of all intelligent smoke detectors using the walk test.

J. Each of the alarm conditions that the system is required to detect should be introduced on the system. Verify the proper receipt and the proper processing of the signal at the FACP and the correct activation of the control points.

K. When the system is equipped with optional features, the manufacturer's manual shall be consulted to determine the proper testing procedures. This is intended to address such items as verifying controls performed by individually addressed or grouped devices, sensitivity monitoring, verification functionality and similar.

3.3. FINAL INSPECTION:

A. At the final inspection, a minimum NICET Level II technician shall demonstrate that the system functions properly in every respect.

3.4. INSTRUCTION:

A. Instruction shall be provided as required for operating the system. Hands-on demonstrations of the operation of all system components and the entire system including program changes and functions shall be provided.

B. The contractor or installing dealer shall provide a user manual indicating "Sequence of Operation."

END OF SECTION 28 3100
SECTION 310000 – SITE WORK

PART 1 - GENERAL

1.1 INTRODUCTION

A. This work shall consist of clearing and grubbing, trench and backfill, pipe installation, grading work, asphalt work, concrete, base course, sub-grade preparation, testing, retaining wall installation, fencing, permanent signing and striping, structural backfill, and overall project coordination and project scheduling required by the construction documents for this project.

PART 2 - SPECIFICATIONS

2.1 TECHNICAL SPECIFICATIONS

A. For all site work the New Mexico Department of Transportation, “Standard Specifications for Highway and Bridge Construction”, Latest Edition, are hereby incorporated by reference, the same as if fully written herein and shall govern this project except where revised, amended, or supplemented by the construction plans, or superseded by the specifications and contract documents.

END OF SECTION
PART 1 - GENERAL

1.1 WORK INCLUDED

A. The work covered by this Section consists of furnishing all plant, labor, equipment, appurtenances and material in performing all operations, hauling, placing, spreading, watering, processing, compacting and shaping earth sections, within the building limits, complete in place in accordance with the Project Manual and Drawings.

1.2 RELATED WORK ELSEWHERE

A. Under-Slab Vapor Retarder – Section 072600
B. General Foundation Notes on Drawings.
C. Project Soils Report – shall be completely reviewed and understood by the contractor. In case of conflict or omission, the Project Soils Report shall govern.

1.3 SUBSURFACE SOIL DATA

A. Subsurface soil investigations have been made and the results are available for examination by the Contractor. This is not a warranty of conditions, the Contractor is expected to examine the site and determine for himself the character of materials to be encountered.
B. No additional allowance will be made for rock removal, site clearing and grading, filling, compaction, disposal, or removal of any unclassified materials.

1.4 REFERENCES

A. ASTM International

1. ASTM D 1556-07 Standard Test Method for Density of Soil in Place by the Sand-Cone Method
2. ASTM D 1557-09 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))
3. ASTM D 4318-10 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
4. ASTM D 6938-10 Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

1.5 SUBMITTALS

A. Submit copies of materials certificates and test results for materials in accordance with type of tests, frequencies and remarks as outlined in the sampling and testing schedule.

1.6 TESTING AND INSPECTION
A. General: The Owner shall employ the services of a registered, licensed Geotechnical Engineer to observe all controlled earthwork soil testing. The testing laboratory shall provide continuous on-site observation by experienced personnel during construction of fill material. The Contractor shall notify the testing laboratory at least two working days in advance of any field operations of controlled earthwork, or of any resumption of operations after stoppages.

B. Report of Field Density Tests

1. The Geotechnical Engineer shall submit, daily, the results of field density tests required by these specifications.

C. Costs of Tests and Inspection

1. The cost of testing, inspecting and engineering, as specified in this section of the specifications, shall be borne by the Owner.

D. Lines and Grades: Alignment and grade of all elements shall be made on true tangents and curves. Grades shall conform to the elevations indicated on Drawings, with minor adjustments, to provide a smooth approach at building lines, at connections to existing paving and to provide proper drainage. Correct irregularities at no cost to the Owner.

1.7 WEATHER LIMITATIONS

A. Controlled fill shall not be constructed when the atmospheric temperature is below 35 degrees F. When the temperature falls below 35 degrees, it shall be the responsibility of the Contractor to protect all areas of completed work against any detrimental effects of ground freezing by methods approved by the testing laboratory. Any areas that are damaged by freezing shall be reconditioned, reshaped, and compacted by the Contractor in conformance with the requirements of this specification without additional cost to the Owner.

PART 2 - PRODUCTS

2.1 STRUCTURAL FILL MATERIAL

A. Material shall consist of soils that conform to the following physical characteristics:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq. Openings By Weight</td>
<td></td>
</tr>
<tr>
<td>1 inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>60 - 100</td>
</tr>
<tr>
<td>No. 200</td>
<td>20 - 60</td>
</tr>
</tbody>
</table>

B. The plasticity index of the material to be used for fill or backfill, as determined in accordance with ASTM D 4318 shall not exceed 15.

PART 3 - EXECUTION

3.1 PREPARATION
A. Clearing and Grubbing: Prior to placing structural fill all borrow areas and areas to receive structural fill shall be stripped of vegetation and deleterious materials. Strippings shall be hauled offsite or stockpiled for subsequent use in landscaped areas or non-structural fill areas as designated by the Owner or his representative and approved by the Geotechnical Engineer.

3.2 CONSTRUCTION AREA TREATMENT

A. Site Preparation - Fill Areas: Prior to placing structural fill the areas to be filled shall be scarified to a depth of twelve inches and moisture conditioned as described below. The area to be filled shall then be compacted to a minimum of 95 percent of maximum density as determined in accordance with ASTM D 1557. Any soft or "spongy" areas shall be removed as directed by the Geotechnical Engineer and replaced with structural fill as described herein.

B. Site Preparation - Cut Areas: Following excavation to rough grade all building and pavement areas shall be scarified to a depth of twelve inches and moisture conditioned as described below. All building and paved areas shall be compacted to a minimum of 95 percent of maximum density as determined by ASTM D 1557.

3.3 EQUIPMENT AND METHODS

A. In areas not accessible to heavy equipment, distribute by and compact with hand operated vibratory compactors.

3.4 BORROW

A. The Contractor shall provide sufficient material for fill to the lines, elevations and cross sections as shown on the contract drawings from borrow areas.

B. The Contractor shall obtain from the Owners of said borrow areas the right to excavate material, shall pay all royalties and other charges involved, and shall pay all expenses in developing the source including the cost of right-of-way required for hauling the material.

3.5 COMPACTION

A. Fill shall be spread in layers not exceeding 8 inches, watered as necessary, and compacted. Moisture content at time of compaction shall plus 2/minus 1 percent of optimum moisture. A density of not less than 95 percent of maximum dry density shall be obtained within the building pads.

B. Optimum moisture content and maximum dry density for each soil type used shall be determined in accordance with ASTM D 1557.

C. Compaction of the fill shall be by mechanical means only. Where vibratory compaction equipment is used, it shall be the Contractor’s responsibility to ensure that the vibrations do not damage nearby buildings or other adjacent property. Where vibratory compaction is not possible, pneumatic rolling equipment shall be used.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>MINIMUM PERCENT COMPACATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural & granular fill in construction area</td>
<td>95</td>
</tr>
<tr>
<td>Subgrade below structural fill</td>
<td>95</td>
</tr>
<tr>
<td>Structural fill under exterior walls</td>
<td>95</td>
</tr>
<tr>
<td>Miscellaneous backfill</td>
<td>90</td>
</tr>
</tbody>
</table>
3.6 MOISTURE CONTROL
 A. The material, while being compacted, shall be within the moisture range of 1 percent below to 2 percent above optimum, well distributed throughout the layer.

3.7 DENSITY REQUIREMENTS
 A. Density of undisturbed soils, in-place fill and backfill shall be determined in accordance with the procedures of ASTM D 1556 or ASTM D 6938. If tests indicate that the density of in-place soil is less than required, the material shall be scarified, moistened or dried as necessary to obtain proper moisture content and recompacted as necessary to achieve the proper densities. Sufficient density tests shall be made and reports submitted by the Testing Laboratory indicating all cut and fill areas were compacted and graded in accordance with the requirements.

3.8 SLOPE PROTECTION & DRAINAGE
 A. Berming and grading shall be done as may be necessary to prevent surface water from flowing into and out of the construction area. Any water accumulating therein shall be removed by pumping or by other methods.

3.9 SOIL EROSION PROTECTION
 A. The Contractor shall ensure that no soil erodes or blows from the site into public right-of-way or onto private property.
 B. The Contractor shall promptly clean up any material which erodes or blows into the public right-of-way or onto private property.

3.10 PRESERVATION OF PROPERTY
 A. Provide temporary fences, barricades, coverings, or other protections to preserve existing items indicated to remain and to prevent injury or damage to persons or property. Apply protections to adjacent properties as required.
 B. Restore damaged work to condition existing prior to start of work, unless otherwise directed.

3.11 EXISTING UTILITIES
 A. The Contractor shall verify the location of any utility lines, pipelines, or underground utility lines in or near the area of the work in advance of and during Earthwork. The Contractor is fully responsible for any and all damage caused by failure to locate, identify and preserve any and all existing utilities, pipelines and underground utility lines. Repair damaged utilities to the satisfaction of the utility owner at no expense to the Owner.
 B. Should uncharted or incorrectly charted piping or other utilities be encountered during grading, consult the Architect immediately for directions as to procedures.
 C. Cooperate with the Owner and public or private utility companies in keeping service and facilities in operation.

3.12 WASTE
 A. Dispose of all waste off Owner's property.
B. Burning of waste will not be permitted.

3.13 AIR POLLUTION

A. Use water sprinkling, temporary enclosures, and other suitable methods to limit dust and dirt air pollution. Comply with governing regulations pertaining to environmental protection.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>TEST FOR</th>
<th>FREQUENCY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATURAL GROUND</td>
<td>Compaction in accordance with ASTM D 1556 or</td>
<td>1 per 2500 square feet of surface</td>
<td>Conduct a minimum of 3 tests</td>
</tr>
<tr>
<td></td>
<td>ASTM D 6938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBANKMENT AND/OR SUBGRADE</td>
<td>Soil Conditions Moisture-Density in accordance with ASTM D 1557</td>
<td>Test 1 per soil classification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compaction control in accordance with ASTM D 1556 or ASTM D 6938</td>
<td>1 per each lift or every 2500 square feet of placed structural fill, whichever is the greater frequency</td>
<td>Immediately after placing, Conduct a minimum of 2 tests per section</td>
</tr>
</tbody>
</table>

END OF SECTION
SEASON 32 2945 – NATIVE GRASS

PART 1 - GENERAL

• RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

• SUMMARY

A. Prepare all areas indicated on the Drawings for grass seeding according to the specifications and drawings contained in the Contract Documents, including: furnishing and installing all seed, fertilizer, organic soil amendments and related maintenance.

B. Related Work Specified Elsewhere:

1. Division 32, Section 328400: Landscape Irrigation
2. Division 32, Section 329115: Soil Preparation
3. Division 32, Section 329400: Planting

• QUALITY ASSURANCE

A. Contractor Qualifications: All work specified herein shall be performed by a licensed landscape contractor experienced with the type and scale of work required and having equipment and personnel adequate to perform the work satisfactorily.

• APPLICABLE STANDARDS

A. All grass seed shall be certified by state of origin. All grass seed shall be certified by state of origin. The certification authority for the state of New Mexico is the New Mexico Crop Improvement Association.

• SUBMITTALS

A. Product Data:

1. Proposed source of all native grass seed, which shall indicate the location from which the seed was harvested, prior to ordering seed.
2. Submit type and source of soil amendment and fertilizer for approval prior to ordering soil amendment.

B. Seed Tags: Seed bag tags and weights per bag and copies of invoices identified by project name.

• PRODUCT DELIVERY, STORAGE AND HANDLING

A. Keep fertilizer and seeds in dry storage away from contaminants.

• JOB CONDITIONS
A. Sequencing, Scheduling: Schedule to seed after installation and approval of the complete irrigation system in the area.

• WARRANTY

A. Warranty seeded areas through specified maintenance period, as outlined in Paragraph 3.04, Maintenance.

B. Where native grass is installed in areas without an irrigation system, no warranty shall be required after the date of final acceptance of all the contract work.

PART 2 - MATERIALS

2.01 SEED MIX

A. All native grass seed mixes or varieties shall be obtained from sources in Texas unless proof is provided that a particular seed is unavailable within the state. Fescue seed shall be obtained from approved producers.

B. Contractor shall furnish certification, showing origin of all seed and pure live seed (P.L.S.) content as determined by a certified authority. Pure live seed shall be the product of percent purity times percent germination. Each bag of seed shall be tagged and sealed by the seed dealer in accordance with the State Department of Agriculture or other local certification authority within the state of origin. The tag or label shall indicate analysis of seed and date of analysis, which shall not be more than 9 months prior to delivery date. Seed may be premixed by the seed dealer and appropriate data indicated on the bag label for each variety.

C. Seed Mixes: Where specified on plans, the seed mixes shall be as follows:

1) Semi-Arid Grassland + Native Shrubs Seed Mix:
 • Agropyron smithii, Western Wheatgrass
 • Aristida purpurea, Purple three-awn
 • Bouteloua curtipendula, Sideoats grama
 • Bouteloua gracilis, Blue grama
 • Bouteloua eriopoda, Black grama
 • Elymus cinereus, Great Basin wildrye
 • Eragrostis intermedia, Plains lovegrass
 • Festuca arizonica, Arizona fescue
 • Oryzopsis hymenoides, Indian ricegrass
 • Sitanion hystrix, Bottlebrush squirreltail
 • Stipa comata, needle and thread
 • Artemisia ludoviciana, Prairie sage
 • Artemisia tridentata, Big Sagebrush
 • Atriplex canescens, Fourwing saltbush
 • Ephedra viridis, Green Mormon tea
 • Fallugia paradoxa, Apache plume
 • Rhus trilobata, Three leaf sumac
 • Ribes aureum, Golden currant
Rate: 7 lbs / acre (66% grass, 33% shrub, even mix across all varieties)

2.02 COMPOST MATERIAL

A. Compost material shall be Back-to-Earth freeze defoliated cotton-burr compost. Apply at rate of 1 to 1 ½” as directed in Part 3- Execution.

2.03 FERTILIZER

A. Exact fertilizer mix may be altered to reflect results of soil analysis, but for purposes of bidding Fertilome New Lawn Starter 9-13-7, Yum-Yum Mix, or approved equal shall be used. Apply at a rate of 30 pounds per 1000 square feet.

2.04 SUPER ABSORBERS

A. Super absorber shall be a cross-linked polyacrylamide. Polyacrylate materials are not acceptable. Polyacrylamide or Terra-Sorb HB shall be applied at the rate of three pounds per 1,000 square feet. Sources for these materials are:

Polyacrylamide: Western Polyacrylamide, Inc.
P.O. Box 790
Castle Rock, CO 80104
(303) 688-3814

Terra-Sorb HB: American Excelsior Co.
4019 Edith Blvd., NE
Albuquerque, NM 87107
(505) 345-7807

2.05 TOP MULCH AND TACKIFIER

A. The tacifier shall be a colloidal polysaccharide or grain starch tacifier. The tacifier shall be homogeneous within the unit package. It shall have no growth or germination inhibiting factors and be nontoxic. It shall be dry mixed with the mulch at a rate of 1 lb. per six cubic feet of mulch.

B. Top mulch shall consist of composted organic cotton burrs applied at a rate of ½ inch layer evenly across seeded areas. This is to be applied to Native Grass Seeding areas only.

PART 3 - EXECUTION

3.01 PREPARATION

A. Preparation of Subgrade: Clear existing soil free of roots, plants, sod, stones, clay lumps and other extraneous materials harmful or toxic to plant growth.

B. Preparation for Seeding Areas:
1. The extent of seed bed preparation shall not exceed the area on which the entire seeding/plugging operation can be accomplished to such prepared bed within a 24 hour period, unless otherwise directed by the Landscape Architect.

2. All areas to be seeded shall be brought to an even grade and shaped according to grading plan. Areas to be seeded/plugged shall be graded to meet finished grades, and be uniformly compacted to prevent uneven settlement after seed installation and watering.

3. Spread compost and super absorber at the specified rates over the seeding or plug areas as noted. Rototill to the following depths:

 - Native Grass Seed: 1 inch layer of compost into top four (4) inches

 Rototill area twice in cross directions. Rototilling shall not occur when the wind is over 10 mph and creates a dust problem to adjoining areas.

4. Spread fertilizer at rate specified and rake into top two inches of soil.

5. Fine rake and remove stones over ½ inch in any dimension, sticks, roots, rubbish and any other extraneous matter brought to surface by the rototilling process. Drag to even grade, and compact to ninety (90) percent modified proctor.

6. Water area to be seeded thoroughly. Apply a minimum of two inches of water throughout area. Allow area to dry.

7. Re-grade as necessary to insure drainage and to meet proposed grades. Correct any differential settlement.

 C. Re-moisten prepared areas before seeding if soil is dry. Do not create muddy soil conditions.

 D. Seed bed preparation is to be approved by the Landscape Architect immediately prior to the seeding operations, and after all seed bed preparation is complete.

3.02 FERTILIZATION

 A. Fertilizer of the type and formulation and rate of application as designated by the Native Grass Seed supplier shall be applied uniformly to the prepared seed bed.

3.03 SEEDING

 A. General:

 1. Do not use wet seed or seed which is moldy or otherwise damaged in transit or storage.

 2. Sow not less than the quantity of seed specified or scheduled.

 3. Areas with turf grass plugs shall be irrigated within 30 minutes of installation to prevent from drying out.

 4. All supplied turf grass plugs shall be installed within 24 hours after being harvested.

 B. Seeding Dates: Shall be accomplished between May 15th and September 1st unless specific permission in writing is issued by the Landscape Architect to allow seeding before or after these dates.

 C. Seeding Rate and Mix: As per Paragraph 2.01.C.

 D. Broadcast Seeding:
1. Where indicated on the plans, the seed shall be mechanically broadcast by use of a rotary spreader or a seeder box with a gear feed mechanism. If seeding is done with a slurry blower, the highest pressure and smallest nozzle opening, which will accommodate the seed, shall be used.
2. Immediately following the seeding operation, the seed bed shall be lightly raked or loosened with a chain harrow to provide approximately ½ inch cover or soil over most of the seed.
3. Contractor’s vehicles and other equipment are prohibited from traveling over the seeded areas.

3.04 TOP MULCH/TACKIFER

A. Immediately following top mulch operation, seeded areas on slopes less than 2:1 shall receive tacifier at the rate recommended by the tacifier manufacturer throughout the seeded area.
B. Spread top mulch to achieve an even ½” coverage.
C. All areas receiving insufficient coverage in the opinion of the Architect shall receive additional mulch and tacifier.

3.05 RESEEDING

A. Void areas greater than one square foot, or repetitive smaller voids which amount to more than 10% of an area that occur within 60 days after installation shall be re-seeded.

3.06 MAINTENANCE

A. Begin maintenance immediately after seeding.
B. Maintain native grass and wildflower seeded areas for not less than the period stated below, and longer as required to establish an acceptable coverage.

1. Maintenance shall continue through the first mowing, or until the entire landscape project is accepted, and until the end of the maintenance period. Maintenance period shall be not less than sixty (60) days after substantial completion, unless otherwise approved by the Landscape Architect.
2. Provide temporary irrigation to the seeded area during the 60 day maintenance period after substantial completion. Irrigate as often as necessary, to promote healthy grass growth and a generally even stand of grass has been obtained.
3. Maintain native grass area by watering, fertilizing, weeding, mowing, trimming and other operations such as rolling, re-grading and replanting as required to establish a smooth, acceptable lawn, free of eroded or bare areas.

3.07 CLEANUP AND PROTECTION

A. During the work, keep all pavements clean and work area in an orderly condition.
B. Immediately after seeding, Contractor to install temporary, protective fencing at edge of native grass or turf grass area. Fencing may be either protective fencing used for tree protection or approx. ¼” dia. white nylon rope with flagging, staked solidly every six to eight feet with t-posts, or a combination of the two.
Contractor to install (8) 11” x 17” paper laminated signs with reinforced holes firmly tied to fencing. Fencing and signs to be maintained by Contractor in place for 60 days after seeding. Text on sign to read:

“Native Grass Seeding Protection Fencing
PLEASE STAY OUT OF AREA”

C. Protect existing elements from damage due to seeding operations, operations by other contractors, other trades and trespassers. Maintain protection during installation and maintenance periods. Treat, repair or replace damaged work to the satisfaction of the Owner at no cost to the Owner.

3.08 OBSERVATION AND ACCEPTANCE

A. When work is completed, including maintenance, the Landscape Architect will, upon request, make an observation to determine acceptability.

B. All seed must be well-rooted into subgrade and any bare spots, low areas or dead native grass must be repaired or re-seeded to the satisfaction of the Owner prior to acceptance.

C. When observed work does not comply with requirements, re-seed rejected work and continue specified maintenance until re-observed by Landscape Architect and found to be acceptable.

END OF SECTION 329300
SECTION 32 8400 – LANDSCAPE IRRIGATION

PART 1 GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Description of Work: The work consists of providing a complete automatic Underground Irrigation System including labor, equipment and materials necessary for a completely operational system.

1. System includes pipe, fittings, valves, sprinkler heads, bubblers, drip emitters, controllers, wires, air release and vacuum valves, meters, backflow prevention devices, valve boxes, testing of system along with components and accessories shown on the drawings and listed herein.

2. Work includes trenching, excavating, sleeving, boring, backfilling, compacting, concrete work, asphalt patching, electrical work, and welding necessary for the completion of the system.

B. Diagrammatic Illustration of System:

1. The sprinkler locations and pipe routing shown on the drawings are approximate and essentially diagrammatic.

2. Actual sprinkler locations and pipe routing may vary due to site contours, underground utilities, other underground obstructions, other above ground obstructions such as existing utilities, trees, shrubbery, landscaping, and existing hardscape, as well as, design and construction changes and other variables which may be encountered in the field.

3. The actual irrigation system installation may vary and may require additional fittings and pipe in order to accommodate the existing field conditions.

C. Repair of Site Damage Due to Malfunction or Component Failure:

1. Repair damage such as erosion or flooding resulting from the failure of any irrigation component.

2. Make all repairs as necessary to the satisfaction of the Owner.

D. Related work specified elsewhere

1. Native grass seeding

2. Landscaping

1.03 QUALITY ASSURANCE

A. The Contractor shall be a licensed Contractor with the State of New Mexico and possess the appropriate licenses required for this project.

B. The Contractor shall have five years of experience in the installation of irrigation systems of this type and magnitude and shall be regularly engaged in the work of irrigation system construction and installation.
C. The Contractor shall have completed at least three projects of similar scope and size in the past five years.

D. Coordination of Work with Other Trades: The Contractor shall coordinate this work with other trades on the site and cooperate with other trades so that the project can progress in a timely and effective manner.

E. Workmanlike Standards and Cleanup: All materials shall be installed in a neat and workmanship like manner according to the manufacturer’s recommendations, local and state codes and as shown on the drawings and as specified herein.

1.04 CONSTRUCTION REQUIREMENTS AND SPECIFICATIONS

A. Contractor’s Risk and Responsibility: The Contractor shall be responsible for inspecting the project site and familiarizing himself with the conditions thereon. The Contractor shall take all responsibility for the work and shall bear all losses resulting to him on account of the amount, character or nature of the work. The Owner assumes no responsibility for obstacles or unfavorable construction conditions, which may be encountered by the Contractor, either above or below ground. The Contractor, at his own expense, shall assume the defense of all suits, claims, and actions brought against the Owner on account of any matter arising from the Contractor’s manner of carrying on or doing the work.

B. Codes, Regulations, Laws and Ordinances: The Contractor shall comply fully with all codes, regulations, laws and ordinances bearing on the conduct of the work specified. Material and workmanship shall be in accordance with all local codes, regulations, laws and ordinances of legally constituted authorities, except when the provisions of these specifications exceed local requirements, these specifications shall take precedence. All installation procedures shall comply fully with the most current edition of the Uniform Plumbing Code, the Uniform Mechanical Code, the National Electrical Code and the Uniform Building Code in effect at time of installation.

C. The contents of these specifications shall not be construed to conflict with any of the above mentioned codes, regulations, laws, and ordinances, and in the event that any portion or portions of these specifications do not comply with the above mentioned codes, regulations, laws, and ordinances the Owner’s Authorized Representative shall be promptly notified in writing as to the noncompliance of these specifications. At that time, any necessary changes will be made to bring these specifications into compliance with the local codes, regulations, laws or ordinances which were in violation thereof. Any additional costs arising from such changes shall be negotiated between Owner and Contractor.

1. If the Contractor performs any work knowing it to be contrary to such codes, regulations, laws, or ordinances and without such notice to the Owner’s Authorized Representative, the Contractor shall bear all costs arising there from.

D. The Work for this project shall conform to the following codes and standards:

5. Underwriters Laboratories (UL).

E. Conflicts Between Specifications and Drawings: Where conflicts occur between the construction drawings, specifications, notes, or building codes, the most stringent requirement shall apply. For irrigation work, drawing notes and detail drawings will generally supercede the written specification. Requests for clarification of the irrigation specifications shall be submitted in writing to the project Architect or Owner’s Representative at least 72 hours prior to the bid opening time. The Architect or Owner’s Representative will then contact the Irrigation Consultant for clarification and a written response. Work done by the Contractor after discovery of such discrepancies, inconsistencies, ambiguities and conflicts shall be done at the Contractor’s own risk.

F. Examination and Verification of Drawing and Site: The Contractor shall examine the site and shall familiarize himself with all conditions that may affect his work. The Contractor shall familiarize himself with the property boundary lines and confine his work within this property. The intent of this design is to not water any property outside the property lines. Before proceeding with any work, the Contractor shall carefully check and verify all plan dimensions with actual field conditions and shall report any deviation between drawings, specifications and the site in writing to the Owner’s Authorized Representative. This report shall be submitted with the information requested in the Notice of Award. If the Contractor fails to verify the field conditions, he will assume full responsibility for the costs of any necessary revisions.

1.05 PERMITS, FEES, CONSTRUCTION LICENSES AND INSPECTIONS

A. The Contractor shall secure and pay for all permits and licenses required for this work, as well as arrange for and pay all costs in connection with any inspections and examinations by local authorities, which may be required during the course of construction. Any necessary re-excavation or changes to the system needed because of the Contractor’s failure to have the required inspections shall be performed at the Contractor’s own expense.

1. The Contractor shall provide a copy of all permits, inspection tags and inspection reports to the Owner as part of the final inspection turn-over items.

B. Electrical Work by Licensed Electrician: Electrical work which involves the connection to, installation of, or extension of electrical power circuits or equipment of voltages of 120 volts or greater shall be performed and permitted by a licensed and bonded electrician and installed in accordance with all appropriate codes, regulations and ordinances.

C. If the Owner’s Authorized Representative considers it necessary to inspect covered work, the Contractor shall, at the Owner’s Authorized Representative’s request, uncover the work in question. If the work is found to be defective, the Contractor shall bear all costs associated with this work. However, if the work is found to be in compliance with the specifications, the Owner shall issue a change order for the cost of this work.

D. Irrigation System Inspections: Refer to other parts of this specification

1.06 PROTECTION OF EXISTING UTILITIES, SITE IMPROVEMENTS AND NATURAL AMENITIES:
A. Protection of Existing Utilities, Site Improvements and Natural Amenities: The Contractor shall be aware of all existing utilities, site improvements and natural amenities such as, buildings, walks, walls, pavement, curbs, trees, shrubs, landscaping, native areas, and wetlands and shall make every effort to preserve and protect their natural conditions. The Contractor shall be responsible for locating all cables, conduits, all piping (water, gas, sewer and drainage) and any other utilities or structures that may be encountered either above or below ground. The Contractor shall hire and pay for a utility locating service to pin point the location of any underground utilities on the site. In New Mexico call “New Mexico One Call” (505) 260-1990 for locating service. All necessary precautions must be taken by the Contractor to prevent any damage to these utilities and existing improvements. In the event that such damage should occur from his or his subcontractors’ operations, the Contractor shall replace or bring to original condition the damaged utilities, amenities or improvements at his own expense and to the complete satisfaction of the Owner.

1.07 HANDLING, STORAGE AND PROTECTION

A. Avoid rough handling of products, which could affect the useful life of the equipment.

B. Load, unload and store materials in accordance with the manufacturer’s recommendations.

C. Deliver pipe in unbroken bundles, packaged to provide adequate protection. Pipe dropped in the unloading process shall be rejected and removed from the site.

D. PVC pipe and fittings shall be covered to protect it from direct sunlight to prevent discoloration and sunburning. Sunburned or discolored pipe shall be rejected.

E. PVC pipe shall be transported in a vehicle with a bed long enough to allow the pipe to lie flat without subjecting it to undue bending or concentrated external loads at any point. Any section of pipe that has been dented or damaged or in any way found to be defective, either before or after installation, shall be replaced.

1.08 SEQUENCING/SCHEDULING

A. Coordinate the installation of the irrigation system with related work.

1. Irrigation product submittals shall be presented by the Contractor and be fully accepted by the LANDSCAPE ARCHITECT prior to materials delivery. Written acceptance shall be issued by the LANDSCAPE ARCHITECT.

2. Irrigation point of connection shall be verified and or installed and tested by the Contractor prior to any irrigation system construction. Written notice to proceed shall be issued by the LANDSCAPE ARCHITECT.

3. Sleeving shall occur in coordination with hardscape construction.

4. Fine grading shall occur prior to staking.

5. Staking shall occur prior to trenching.

6. As-built recording and testing shall occur prior to final grading.

7. All irrigation shall be installed, as-built, tested and fully functional prior to any landscape materials installation.

1.09 INSTRUCTIONAL TRAINING BY CONTRACTOR:

A. The Contractor shall provide instructional training to the owner for the following items if contained in the irrigation system:

City of Santa Fe
Fire Department Station No. 2
Issued for Bid 03.10.2020

LANDSCAPE IRRIGATION

0328400 - 4

SURROUNDINGS
1. All pumping systems
2. All controllers
3. All filters
4. All pressure regulation devices
5. All system valves

1.10 PRODUCT SUBMITTALS

A. The Contractor shall submit product information for the specific brands or models that he intends to use, for review by the LANDSCAPE ARCHITECT. No product shall be installed without written authorization from the LANDSCAPE ARCHITECT.

1. The Contractor shall submit product cut sheet information for all materials that he proposes to use. The following product submittals shall be presented to the LANDSCAPE ARCHITECT for approval:

<table>
<thead>
<tr>
<th>Backflow – Unit / Type</th>
<th>Fittings – Drip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backflow – Enclosure / Freeze Protection</td>
<td>Fittings – Ductile Iron</td>
</tr>
<tr>
<td>Emission Device – Pop-up Spray Head</td>
<td>Fittings – Nipple (brass)</td>
</tr>
<tr>
<td>Emission Device – Drip Emitters</td>
<td>Fittings – Nipple (Sch.80 PVC)</td>
</tr>
<tr>
<td>Emission Device – Bubblers</td>
<td>Fittings – Nipple (Flex)</td>
</tr>
<tr>
<td>Emission Device – Quick Coupler w/Key</td>
<td>Fittings – Unitized Swing Joints</td>
</tr>
<tr>
<td>Valve Automatic – Master Valve</td>
<td>Pipe – Mainline</td>
</tr>
<tr>
<td>Valve Automatic – Zone Valve</td>
<td>Pipe – Lateral</td>
</tr>
<tr>
<td>Valve Brass Manual – Angle</td>
<td>Pipe – Ductile Iron</td>
</tr>
<tr>
<td>Valve Brass Manual – Straight</td>
<td>Pipe – Steel (Sch.40)</td>
</tr>
<tr>
<td>Valve Brass Manual – Gate</td>
<td>Pipe – Drip Tubing</td>
</tr>
<tr>
<td>Valve Brass/Bronze Manual - Ball</td>
<td>Pipe – Perforated Drain Pipe</td>
</tr>
<tr>
<td>Valve Unitized Angle Valve</td>
<td>Pipe – Sleeve</td>
</tr>
<tr>
<td>Valve Iron Body Manual – Gate</td>
<td>Wire – 24 Volt</td>
</tr>
<tr>
<td>Valve Mechanical Joint Manual – Gate</td>
<td>Wire – 120 Volt</td>
</tr>
<tr>
<td>Valve Sch.80 – Ball</td>
<td>Wire – Communication Cable</td>
</tr>
<tr>
<td>Valve – Air Release</td>
<td>Wire – Ground (bare copper)</td>
</tr>
<tr>
<td>Valve – Filters</td>
<td>Wire – Ground Rod</td>
</tr>
<tr>
<td>Valve – Pressure Regulating</td>
<td>Wire – Ground Plate</td>
</tr>
<tr>
<td>Valve – Pressure Sustaining</td>
<td>Wire – Ground Enhancement</td>
</tr>
<tr>
<td>Valve – Flow Meter</td>
<td>Wire – Splice – 24 Volt Splice Kit</td>
</tr>
<tr>
<td>Valve –</td>
<td>Wire – Splice – 120 Volt Splice Kit</td>
</tr>
<tr>
<td>Valve –</td>
<td>Wire – Splice – Grounding</td>
</tr>
<tr>
<td>Valve –</td>
<td>Wire – Conduit – PVC</td>
</tr>
<tr>
<td>Valve –</td>
<td>Gauges – Water Pressure</td>
</tr>
<tr>
<td>Valve Boxes</td>
<td>Identification and Warning Tape</td>
</tr>
<tr>
<td>Valve Vaults</td>
<td>Chemical – Solvent Weld Cement</td>
</tr>
<tr>
<td>Fittings – Brass</td>
<td>Chemical – Solvent Weld Primer</td>
</tr>
<tr>
<td>Fittings – Copper</td>
<td>Chemical – Lubricant</td>
</tr>
<tr>
<td>Fittings – Galvanized</td>
<td>Chemical – Thread Sealers</td>
</tr>
</tbody>
</table>
1.11 IRRIGATION POINT OF CONNECTION

A. The irrigation system is new and will need to be connected by the contractor as outlined in the plans. The Contractor shall connect to the main line piping and install the remainder of irrigation system as illustrated on the drawings.

1.12 IRRIGATION SYSTEM STAKING

A. Contractor to locate and mark all underground utilities, public and private, recorded and unrecorded, prior to staking.

B. The field locations of certain irrigation components will require a high degree of accuracy to meet the water conservation, coverage patterns and distribution uniformity intents of the irrigation design. Additionally, certain components may be required to be installed at precise locations to accommodate future site construction, utility easements, or other improvements not apparent in the field.

 1. The Contractor shall perform the field staking of these components and shall have the Owner’s Authorized Representative approve all locations prior to installation.

 a. All spray-type sprinklers
 b. All mainline piping
 c. All lateral piping
 d. All valves – automatic, manual, air release, pressure regulating, drain
 e. Controllers (if applicable)
 f. Relocated Hot Box and associated equipment in Phase 1A
 g. Relocated Valve Boxes associated with existing irrigation zones in Phase 1C

 2. Stake all components using painted wooden stakes, flagging and/or ground paint, color coordinated to the type of irrigation component.

A. The method of staking for the above referenced SPRINKLER components shall be by the use of survey type equipment capable of providing accuracies of +/- one inch horizontal. The ground coordinate location of each system component shall be that of the digital plan’s block location or as determined by the irrigation designer as a result of adjustment, based on as-built variations of other hardscape elements constructed at the site.

 1. The Landscape Architect shall approve all field-staked locations prior to installation.
 2. The Contractor shall be responsible for all costs associated with the field layout.

B. The Contractor shall be responsible for staking all lateral piping, drip tubing, bubblers and any other irrigation system components that do not require a high degree of accuracy.

 1. Stake all components using painted wooden stakes, flagging and/or ground paint, color coordinated to the type of irrigation component.
 2. The irrigation system designer shall approve all field-staked locations prior to installation.

2.03 IRRIGATION SYSTEM AS-BUILT RECORDS

A. The Contractor shall maintain a field copy of “red-line drawings” that indicate any and all changes or deviations from the original irrigation plan. The Contractor shall keep this field copy up to date, documenting
all changes each day of construction. This red-line plan shall be turned over to the LANDSCAPE ARCHITECT as part of the preliminary as-built records for review.

B. The Contractor shall provide professional, accurate, survey quality as-built record drawing and digital files of the completed irrigation system.

1. Sprinklers, automatic valves, quick couplers, air release valves, pressure regulation valves, isolation valves, satellite controllers, backflow preventers, wire splices, drains, piping, wiring and any other irrigation system components installed as part of this project shall be accurately mapped utilizing survey grade equipment capable of accuracies of +/- one inch horizontal.

2. In order to provide the accuracy required for buried components such as mainline pipe, install temporary markers (pipe, flagging or wood stakes) during the backfill process to identify the location of all mainline pipe and wire changes of directions. Once the marked locations have been accurately mapped, remove the temporary markers. Establish three permanent survey/mapping control reference points surrounding the site in a triangle pattern. Each survey/mapping control reference point shall be included in the final record drawings (and digital file) and shall note the ground coordinates (Northing, Easting and Elevation) of each reference point.

3. Upon completion of the survey quality as-built, the digital data shall be incorporated into the original AutoCAD design bid documents and addendums. All mapped locations shall be updated with the appropriate design symbols with the block insertion point directly corresponding to the derived ground coordinates. The as-built records shall also reference any other changes to mainline piping, lateral piping or wire routing, including all sizing changes.

C. Provide two hardcopy prints and one compact disc containing the entire record drawing in digital AutoCAD format to the Landscape Architect for review. Printed material shall be of the same size, title block and scale as the original bid documents and indicate “Irrigation System As-Built Record Drawings”.

D. Provide two (2) 11” x 17” laminated, waterproof controller sheets for each controller in the system, showing the final irrigation system as-built information. One sheet shall be placed in the appropriate controller and the other sheet provided to the Owner for office use. The controller sheet shall have color-coded, bold outlines for each station or valve and area for which that valve covers. The station numbers shall be clearly readable at a reduced size print of 11”x17”. For projects with more than one controller, bind one copy as a book containing all of the controller sheets for office use.

E. Operations and Maintenance Manual:

1. Provide two (2) project operation and service/maintenance manuals in the form of a 3-ring binder or spiral bound book. Submit one copy of the manual to LANDSCAPE ARCHITECT for review prior to the substantial completion. Include the following information:

 a. Name, address, phone number, and fax number of the contracting company.
 b. Name of Contractor’s superintendent on this project.
 c. Supplier for each product responsible for warranty, service, & replacement parts.
 d. Manufacturer’s catalog cut-sheets, specifications, operation manuals and parts break down sheets for all equipment used for the project. The products and books shall be broken into 12 tabbed categories of:

 1) Contractor & Supplier Information
 2) Irrigation System Record Drawing & Controller Stationing Drawing
 3) Legend & Detail Drawings
4) Watering Schedule
5) Controller Information
6) Pipe, Fittings & Swing Joints
7) Sprinkler Heads, Bubblers & Drip Emitters
8) Valves & Valve Boxes
9) Wire, Wire Splices & Grounding
10) Test reports: POC, backflow, grounding, hydrostatic piping
11) Service Organizations (see instructions below)
12) Winterization and Startup Instructions (see instructions below)

2. Equipment Service Organizations: Provide the Owner with the names and addresses of permanent service organizations trained by the equipment manufacturers capable of providing satisfactory service within 24 hours.

3. A copy of Toro Tech Tip Bulletin #2009-01 "Winterization and Start-up", available from the local Toro Irrigation distributor. This bulletin provides useful and informative information on the proper way to winterize the irrigation system in the fall and restart the irrigation system in the spring, to avoid damage to the system due to freezing and improper refilling of the system.

1.03 SYSTEM INSTRUCTIONAL TRAINING

A. Prior to final acceptance, provide a minimum of 4 hours of system operation and maintenance instructions for the Owner’s maintenance personnel. Subjects to be covered shall include winterization and spring start-up procedures (Toro Tech Tip Bulletin #2009-01), sprinkler disassembly, adjustment and repair, controller operation and troubleshooting, grounding system maintenance, backflow preventor maintenance, and any other topics pertinent to the system.

1.04 WARRANTY

A. In addition to manufacturer’s guarantee and warranties, the Contractor shall guarantee his work for a period of one (1) year from the date of final acceptance. The Contractor, as his own expense, shall repair or replace all defective work, materials, leaks, trench settlement and any other work performed by the Contractor under this contract.

1. Should operational difficulties in connection with the irrigation system develop within the specified guarantee period, said difficulties shall be corrected within a reasonable length of time depending upon the magnitude of the problem.
2. Warranty shall cover repair of damage to any part of the premises resulting from leaks or other defects in materials, equipment or workmanship, to the satisfaction of and at no expense to the Owner.
3. Materials shall have a minimum guarantee against defects for a period of one (1) year from date of acceptance. Some products may have extended manufacturer warranties, which shall apply to the end user.
4. During the one year warranty period, if the amount of system leaks or breaks exceeds five, the Contractor shall extend the warranty period an additional one year. Leaks and breaks shall be documented in writing by the Owner and Contractor.

B. Emergency Repairs: If the Contractor does not respond to the Owner’s request for repair work within 24 hours, the Owner may proceed with the necessary repairs and charge the Contractor for all expenses in-
curred in the repair work. These repairs will not relieve the Contractor of any part of his guarantee obligation.

C. System Adjustments: Upon completion of the installation, the Contractor shall adjust system components and controller to provide optimum sprinkler system performance including nozzle changes, adjustments to arc and radius of throw. The Owner will be responsible for minor adjustments to the system during the guarantee period.

D. Service Organizations: Provide the Owner with the names and addresses of permanent service organizations trained by the equipment manufacturers capable of providing satisfactory service within 24 hours.

E. If trench, sprinkler or valve box settlement of ½” or more occurs within one (1) year from final acceptance, remove the sod or finish grade treatment and refill and re-compact the soil structure. Reinstall sod or finish grade treatment material to the satisfaction of the Owner.

PART 2 PRODUCTS

2.01 MATERIALS

A. Material Quality and Warranty:

1. Provide new and without flaws or defects of any type and of professional quality.
2. Materials shall have a minimum guarantee of one year against material defects or defective workmanship. Rotary sprinklers shall have a minimum warranty of two years.
3. Materials shall be of the brands and types noted on the drawings, as specified herein, or approved equal. Whenever materials are specified by name and model number, this designates an exact description of material, features, and performance required. Product model numbers are provided for material references and are subject to change by the manufacturer. Contact the Landscape Architect for product clarification if specific model numbers have changed or products specified are no longer available.

B. Additional Spare Equipment and Tools Provided to Owner: The Contractor shall provide to the Owner the following list of equipment at the completion of the project:

1. 1 each - Swing joint assemblies for each sprinkler type used in the system.
2. 2 each - Sets of specialized sprinkler tools offered by manufacturer.
3. 2 each - Manual valve keys for point of connection valve and automatic valve isolation.
4. 1 each - Manual valve keys to fit 2” operating nut on mainline isolation valves if installed.
5. 1 each - Automatic valve of each size and type used in the system.
6. 5 each - Bubblers of each type used in the system, if any.
7. 2 each - Quick coupler valves of the type specified for the system, if installed.
8. 2 each - Quick coupler keys unless specified otherwise in the irrigation legend.
9. 2 each - 1”x3/4” Hose swivels unless specified otherwise in the irrigation legend.

C. Backfill Material to bed piping: Provide clean dirt, loam or sand, free from clumps, brush, organic material, frozen material, rocks larger than 3/4” in diameter and any other unsuitable substances that might damage the pipe during the backfilling process.
2.02 SYSTEM COMPONENTS

Not all products listed below apply to this system. Reference the irrigation system drawings and the project detail drawings for products specific to this project.

A. Irrigation Controllers / Satellites: Type, model, size and manufacturer as specified on the drawings or approved equal.

B. Irrigation Booster Pump: Type, model, size and manufacturer as specified on the drawings or approved equal.

C. Rotary Sprinklers, Bubblers and Quick Couplers:

1. Rotary sprinklers and bubblers shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

2. Quick couplers shall be of the size, type, model number and manufacturer as indicated on the drawings or approved equal. The quick coupler shall also have a built in stabilizer “wing” or utilize a manufacture approved stabilizing device. The stabilizing device must not be attached to any portion of the quick coupler barrel where the key is inserted, to prevent deforming of the quick coupler because of over-tightening of connection bolts.

 a) Quick coupler keys shall be of the size, type, model number and manufacturer as indicated on the drawings and shall be properly configured for the type of quick coupler outlet specified. The key shall be also include a hose swivel adapter sized for the key with a ¾” hose-end male thread.

D. Valves - Automatic:

1. Master Valve – shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

2. Zone Valve – shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

E. Valves - Brass or Bronze Manual (3/4”-3”):

1. Angle Valve (with union) – WOG, constructed of red or yellow brass, rated for 150psi working pressure, replaceable valve stem packing, serviceable without removal from system, rising or non-rising stem, union type, FIPT and bronze cross handle.

 a. Champion/Arrowhead #300 series, Buckner AV/VBM series or approved equal.

2. Angle Valve (without union) – WOG, constructed of red or yellow brass, rated for 150psi working pressure, replaceable valve stem packing, serviceable without removal from system, rising or non-rising stem, FIPT and bronze cross handle.

 a. Champion #200 series, Buckner AV/VBM series or approved equal.
3. Straight Valve – WOG, constructed of red or yellow brass, rated for 150psi working pressure, replaceable valve stem packing, serviceable without removal from system, rising or non-rising stem, FIPT and bronze cross handle
 a. Champion/Arrowhead #100 series or approved equal.

4. Gate Valve – WOG, constructed of red or yellow brass, rated for 200psi working pressure, replaceable valve stem packing, rising or non-rising stem, FIPT and bronze cross handle.
 a. Watts #WGV-X series or approved equal.

5. Ball Valve – WOG, 2-piece bronze construction, standard port, FIPT and rated at 600psi.
 a. Watts #B-6000 series or approved equal.

F. Valves - Iron Body Push-On (4"-12"):

1. Gate valve at a change of direction fitting – The valve shall be an iron body with fusion bonded epoxy coating that meets or exceeds AWWA C550 standards, resilient wedge, gasketed push-on, 2” operating nut and built-in sleeve pipe shroud around operating nut. The valve shall have a spigot inlet and a bell outlet and also include a restraint system that allows the valve to be restrained to the fitting and the outlet pipe restrained to the valve.
 a. Leemco #LMV SB series or approved equal.

2. Gate valve (inline) - The valve shall be an iron body with fusion bonded epoxy coating that meets or exceeds AWWA C550 standards, resilient wedge, gasketed push-on, 2” operating nut and built-in sleeve pipe shroud around operating nut. The valve shall have a bell inlet and a bell outlet and also include a restraint system that allows the valve to be restrained to the pipe on both inlet and outlet.
 a. Leemco #LMV BB series or approved equal.

G. Valves – Iron Body Mechanical Joint (14”- larger):

1. Gate valves larger than 14” shall be ductile iron with fusion bonded epoxy coating that meets or exceeds AWWA C550 standards, resilient wedge, transition gasket for IPS pipe, mechanical joint connections and 2” operating nut. The valve shall also include Megalug restraint system for IPS pipe.
 a. Mueller #2361 series with Megalug or approved equal.

H. Valves – Sch.80 PVC – Ball (3/4"-3”):

1. Sch.80 PVC true-union ball valves shall be heavy bodied PVC with full schedule 80 bore, buttress threaded union nuts, PTFE ball seats and shall be rated to 235psi. The valve shall be equipped with the appropriate end connectors as per detail drawing (socket or FIPT).
 a. Spears Regular Style Sch.80 or approved equal.
2. Sch.80 PVC compact ball valves shall be heavy bodied PVC with full schedule 80 bore, PTFE ball seats and shall be rated to 235psi. The valve shall be equipped with the appropriate end connectors as per detail drawing (socket or FIPT).

a. Spears Compact Style Sch.80 or approved equal.

I. Valves - Air Release:

 1. The air release valve shall be a single body valve, 1” FIPT inlet, stainless steel float and trim and BUNA-N seat.

a. Crispin #UL10.1 or approved equal.

J. Valves – Filter: The filter(s) shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

K. Valves – Pressure Regulating / Pressure Sustaining: The pressure regulating or pressure sustaining valves shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

L. Valves – Flow meters: The filter(s) shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

M. Valve Boxes:

 1. Large Size (for automatics, air release, filters, flow meters, pressure regulation) unless specified otherwise on drawings.

a. HDPE plastic body, 15 ¾” x 25 ¾” top access size, 24 ½” x 34” bottom size with a 12” and a 15” depth (2 boxes are required for each component). The lid (for one box only) shall be HDPE plastic, bolt down, green (when installed in turf), beige/tan (when installed in non-turf), purple/violet (for systems using effluent water).

i. Carson #1324-12 and Carson #1324-15 valve boxes or approved equal.

ii. Carson #1324-3D bolt down flush lid (with appropriate color) or approved equal.

2. Medium Size (for 120V wire splices) unless specified otherwise on drawings, shall be a Carson #1419-18 with a grey “electrical” lid or approved equal.

a. HDPE plastic body, 10” round access with bolt down lid suitable for covering a PVC pipe access sleeve (see drawings for access sleeve size).

i. Carson #910 or approved equal.

ii. Carson #910-4B, T-Style, bold down lid with appropriate color or approved equal.

N. Valve Vaults: Shall be of the type, model, size and manufacturer as specified on the drawings or approved equal.

O. Fittings – Brass, Copper, Galvanized, PVC, Drip:
1. Brass: Medium brass, screwed 125 lb. Class
2. Copper: The wrought copper and bronze solder joint fittings shall conform to ANSI-B88-72 standards.
3. Galvanized: Galvanized fittings shall be standard schedule 40 galvanized malleable iron fittings.
4. PVC: Solvent Weld Fittings on Lateral Piping:
 a. Schedule 40 PVC solvent weld fittings. PVC type 1 cell classification 12454. Conform to ASTM D 2466 and the National Sanitation Foundation (NSF) standard 61.
 b. Approved manufacturers are Lasco & Spears.
5. PVC: Solvent Weld Fittings on Mainline Piping Sizes 3” and Smaller:
 a. Schedule 80 PVC solvent weld fittings. PVC type 1 cell classification 12454. Conform to ASTM D 2467 and the National Sanitation Foundation (NSF) standard 61.
 b. Approved manufacturers are Lasco and Spears.
6. Drip: Fittings for ¾” polyethylene, compression or insert type.
 a. For ¾” tee, ell and end/flush cap, the drip tube fitting shall be manufactured by tubing manufacturer or for use with the specific ¾” polyethylene tubing supplied. The approved connection style is compression or barbed insert with retaining clamp.

P. Fittings - Ductile iron: “O”-ring gasket fittings with pipe to fitting joint restraints shall be used on all mainline piping 4” through 12”.

1. Ductile iron grade 65-45-12 in accordance with ASTM A-536.
2. Deep bell push-on joints with gaskets meeting ASTM F-477 standards.
3. Provide restraint links at reducers, secured to the main fitting.
4. Approved manufacturers are the Harrington Corporation, Leemco, Inc. or approved equal.

Q. Fittings - Joint Restraints: Pipe To Fitting and Pipe To Valve:

1. Capable of securing PVC pipe directly to restraining lugs on certain deep bell ductile iron fittings with the use of bolts, links or adaptors.
2. Capable of securing PVC pipe to PVC pipe and PVC pipe to ring gasket gate valves without the use of threaded linkages.
3. The restraint system shall be manufactured for the specific brand of ductile iron fittings used.
4. The Contractor shall ensure against fitting and fitting bolt and fastener deterioration by providing documentation from the fitting manufacturer that all metal parts supplied or used will not degrade do to adverse soil and salinity conditions.
5. Leemco or Harco or approved equal.

R. Fittings - Nipples and Swing Joints:

1. Brass Nipples: 85% red brass, AMSI schedule 40 threaded pipe.
2. Galvanized Nipples: Galvanized pipe & nipples shall be standard schedule 40 galvanized steel pipe.
3. PVC Schedule 80 Nipples: Sch.80 PVC pipe with machined threads in the configurations and lengths as indicated on the drawings. Molded PVC nipples will not be accepted.
4. PVC Flexible Nipples: Any PVC Flex Nipples specified on the drawings or detail drawings shall be as manufactured by Excalibur or approved equal.

5. Swing Joint Assemblies – Rotary Sprinklers: Size, type and model number as indicated on the drawings. Molded of rigid polyvinyl chloride (PVC), Type 1, Cell classification 12454-B per ASTM specification D 1784. Pipe sockets per ASTM D 2464. Entire assembly rated at 315psi maximum working pressure at 73 degrees F when tested in accordance with ASTM D 3139-96a. Warranted for five (5) years from date of installation. Each rotating joint shall be sealed with an elastomeric O-ring, installed pre-compressed in a sealing groove free of parting lines to prevent leakage. Each rotating joint shall have modified stub ACME threads and shall have special engineered diameters and clearances to allow full circle movement and to reduce stress concentrations and joint fracture at thread roots.

a. Lasco Fittings Inc. or approved equal – product submittal required.

6. Swing Joint Assemblies – Spray-type sprinklers or bubblers: Unitized PVC swing joint assembly or pre-manufactured ½” flex tubing style assembly.

a. Lasco Fittings Inc. or approved equal – product submittal required.

S. Fittings - Service Tees (4” and larger):

1. Mainline sizes 4” and above: Ductile iron, epoxy coated, service tee with FIPT outlet.

a. Leemco or Harco or approved equal.

T. Fittings - Service Saddles For PVC Pipe 6” – 14” (by approval only):

1. If approved by the LANDSCAPE ARCHITECT or specifically called on the drawings. Coated with double stainless steel straps and IPS threaded outlets. Saddle body - ductile iron ASTM A536 with 12 mils min thick clear plastic fusion coating with a dielectric strength exceeding 1,000 V/mil. Sealing gasket - Buna-N Blend compounded for use with water, salt solutions, and mild acids. Bands, bolts, nuts and washers - 18-8 type 304 stainless steel or as provided by the manufacturer.

a. The Contractor shall ensure against fitting and fitting bolt and fastener deterioration by providing documentation from the fitting manufacturer that all metal parts supplied or used will not degrade do to adverse soil and salinity conditions.

b. JCM 406 series or Smith-Blair 317 epoxy coated series or approved equal.

U. Fittings - Steel welded: Shall be standard weight 150 # butt-weld type steel fittings suitable for welding to standard weight steel pipe.

V. Pipe – PVC, Copper, Ductile Iron, Galvanized Steel, Drip, Drain and Sleeve:

1. PVC Pipe

 a. Continuously marked with the manufacturer’s identification, size, type, schedule or class, working pressure and NSF approval.

 b. Free of cracks, holes, debris, blisters, wrinkles and dents.

 c. JM, North American, Modern, Eagle, PW or approved equal.
d. Schedule 40 Solvent Weld – Lateral / Mainline Piping - Sizes 3” and Smaller: Virgin polyvinyl chloride with integral solvent weld bells in accordance with ASTM D2241 and ASTM D1784, cell classification 12454-B type 1, grade 1

e. Class 200 Gasket End – Lateral Piping - Sizes 4” and Larger: Virgin polyvinyl chloride with integral gasket bell in accordance with ASTM D2241 and ASTM D1784, cell classification 12454-B type 1, grade 1. Gaskets and joints ASTM D-3139 and F-477, factory installed and retained with a metal or plastic retainer support ring.

f. C905 DR18 Gasket End (with restraints) – Mainline Sizes 14” and larger: Shall have a cast iron outside diameter with integral bell design rated at 235 PSI. The pipe shall be NSF and UL approved. The pipe shall connect directly to cast iron mechanical joint fittings.

2. Copper Pipe: seamless copper water tubing Type ‘K’ rigid tube as per ASTM-B88-72.

5. Drip Tubing: ¾” polyethylene.

7. Perforated Drain Pipe: Single wall, corrugated, HDPE, perforated drain pipe with perforation pattern type “C” (8-hole pattern). Use also perforated internal end plug.

 a. Advanced Drainage Systems (ADS) “type C” pipe or approved equal.
 b. ADS #0434AA perforated internal end plug or approved equal.

9. Sleeve Pipe - two sizes larger than the pipe to be sleeved: Sleeve pipe up to 4” shall be Schedule 40 PVC solvent weld. Sleeve pipe 6” and larger shall be Class 200 PVC gasket end.

W. Wire - 24VAC, 120VAC, Communication and Grounding:

1. 24VAC Direct Bury: Single conductor copper wire, underground feeder, rated at 600 volts, PVC or polyethylene jacket, UL listed for use in a NEC Class II circuit (30 volts or less), supplied on 2,500’ rolls.

 a. Station wire (valve or sprinkler) shall be #14awg (red)
 b. Common wire (valve or sprinkler) shall be #12awg (white)
 c. Master valve or Pump Start (valve or circuit) shall be #12awg (blue)
 d. Tracing wire (if specified) shall be #14 (yellow)

2. 120VAC Direct Bury: Single conductor copper wire, underground feeder, rated at 600 volts, PVC or polyethylene jacket and supplied on 2,500’ rolls.

 a. (3) individual runs of wire per circuit.
 b. Colors: (1) Black, (1) White and (1) Green
 c. Size as indicated on drawings.

3. Communication wire Direct Bury: Type, model, size and manufacturer as specified on the drawings or approved equal.

4. Grounding (bare copper): Type, model, size and manufacturer as specified on the drawings or approved equal.

X. Wire – Ground Rods, Ground Plates and Ground Enhancement:
1. Ground Rods: copper clad electrode, minimum diameter 5/8”, minimum length 8’, high tensile steel, 10-mil copper skin, manufactured to the requirements of the National Electrical Code article 250-52(C),
 a. Paige #182000 or approved equal.

2. Ground Plates: 4” x 96” x .060” thick with 25’ of #6 bare copper wire attached to plate using a welding process, manufactured to the requirements of the National Electrical Code article 250-52(D),
 a. Paige #182199 or approved equal.

3. Ground Enhancement Material: Packaged, loose material made for the purpose of improving or enhancing electrical grounding, typically installed above and below grounding plates.
 a. Paige #1820052 supplied in 25# bags or approved equal.

Y. Wire – Splices and Connectors:

1. Wire Splices – 24 Volt: Unitized plastic capsule, filled with dielectric sealer, designed for direct burial, accommodating 1-3 individual wires with one wire nut. Application range from 32F to 120F.
 a. Use where splicing occurs between #14 24VAC, station wire and valve / sprinkler solenoid and between #12VAC, common wire and valve / sprinkler solenoid.
 b. 3M #DBR/DBY or approved equal.

2. Wire Splices – 120 Volt: Unitized splice kit utilizing a two-part pre-polymer and catalyst epoxy resin, designed for mixing with supplied packaging.
 a. Use appropriately sized and labeled wire connector.
 b. 3M #Scotchcast #4A or approved equal.

3. Split Bolt Connector for Grounding Wire: High strength copper alloy designed to accept the appropriate wire size and to be installed onto 5/8” grounding rod.
 a. IK series by ISCO of Cincinnati, Ohio or approved equal.

 a. Cadweld or approved equal.
Z. Wire - Conduit for Underground Burial:

1. Schedule 40 gray PVC wire conduit, UL listed for underground burial. Conduit size shall conform to NEC for the number and size of conductors installed in the conduit.

a. Sweep Ells: Sch.40 gray PVC, long radius, with an 18” bend radius of the sizes indicated on the drawings or by number of conductors.

AA. Gauges – Water Pressure: Water pressure gauges shall be liquid filled to reduce wear due to vibration and shall have an accuracy within 1%. The gauge shall have stainless steel housing with a minimum diameter of 3 ½”. Pressure range shall be 30% higher than the highest pressure expected and shall have a pounds-per-square-inch scale (PSI).

BB. Identification Materials and Warning Tape:

1. Valve Number Identification Tags: Shall be a polyurethane plastic, large enough to write the appropriate label, clearly and legibly. The tags can also accommodate permanent “hot-stamp” markings. The tags shall have a pre-drilled hole, large enough to accommodate a plastic fastener or cable-tie.

a. Attach to flow control handle of each automatic valve.

b. Numbering system for multiple controller systems shall be the number of the controller followed by the station number such as 1-1, 1-2, 1-3, etc.

c. T. Christy Enterprises or approved equal.

2. Warning Tape: Non-detectable plastic tape, 4-mil thick low-density polyethylene for extended underground use. Meets ASTM D882 and D671. 3” wide with printed message continuously repeated every three feet. Minimum of 1000’ rolls.

a. For Electric: Red in color and labeled “Caution Electric Line Below” for 115 volt or higher voltage electric wiring installed in trenches. Christy’s #TA-ND-3-RE or approved equal.

b. For Irrigation Mainline: Blue or Green in color and labeled “Caution Irrigation Line Buried Below” for Mainline Pipe installation. Christy’s #TA-ND-3-BI/GI or approved equal.

c. For Non-Potable (all piping): Purple in color and labeled “Caution Recycled / Reclaimed Water Line Buried Below” for all system piping (mainline and lateral). Christy’s # TA-ND-3-RW

CC. CHEMICAL - Cement, Primer, Lubricant, and Sealers:

1. Cements: Clear or gray, slow flowing, medium bodied, fast curing, high strength cement. ASTM D2564, IAPMO-UPC and NSF listed. Application temperature 40F to 110F.

a. For solvent welding class 200 and schedule 40 PVC types I & II in sizes ¾” to 6” with interference fits: IPS Weld-On 705 series or approved equal

b. For solvent welding schedule 80 PVC pipe and schedule 80 PVC TOE nipples types I and II in all sizes through 12”: IPS Weld-On 711 series or approved equal.

2. Primer: Purple, fast acting primer to soften and prepare the PVC pipe for bonding. IAPMO-UPC and NSF listed. Application temperature 40F to 110F.

a. IPS Weld-On P-70 series primer or approved equal.
3. Pipe gasket lubricant used for “O”-Ring gasket pipe: Shall be supplied by the pipe manufacturer or a lubricant recommended by the manufacturer for use with their pipe.
 a. IPS Weld-On #787 gasket lubricant or approved equal.

4. Thread Sealers: Caution - The use of pipe dope on most plastics used in the manufacture of sprinklers and valves can cause thread failure and stress cracking and can void the warranty of sprinklers and valves.
 a. For threaded connections joining PVC and metal threads, Spears Blue 75 or IPS Weld-On “All Seal” thread sealant compound or approved equal.
 b. For Cyolac, ABS, or plastics other than PVC, use Teflon tape only.
 c. For metal-to-metal connections, Weld-On “All Seal” Thread sealing compound or approved equal.

PART 3 EXECUTION

3.01 EXAMINATION AND VERIFICATION OF DRAWING AND SITE

A. Examine site and construction documents: The Contractor shall investigate and be familiar with all conditions, which may affect the work and shall confine work to within designated boundaries shown on the drawings. Before proceeding with work, check and verify dimensions with actual field conditions and shall report deviations in writing to the Landscape Architect.

B. Existing Construction: Use extreme caution when working near existing construction. Repair accidental damage to the satisfaction of the Owner, at no cost to the Owner.

3.02 PROTECTION OF EXISTING AMENITIES

A. Protection of existing: Protect existing utilities, site improvements and natural amenities such as, buildings, walks, walls, pavement, curbs, trees, shrubs, landscaping, native areas, and wetlands. Locate cables, conduits, piping (water, gas, sewer and drainage) and other utilities or structures prior to beginning work.

3.03 INSPECTIONS AND TESTING

A. Inspections and testing: The Contractor shall note that this project will require certain tests, verifications and or inspections by the Landscape Architect or their authorized representative. It shall be the responsibility of the Contractor to coordinate the following inspections with the Landscape Architect.

1. Product submittal review:
 a. Refer to Product Submittal section of this specification.
 b. The Contractor shall only install products approved by the Landscape Architect.
 c. The Contractor shall receive written acceptance/rejection of proposed materials from Landscape Architect.

2. Verification of stored materials and irrigation system design documents:
a. Upon request, the Contractor shall provide digital photographic evidence to the Landscape Architect, documenting stored and or on-site materials including: pipe, wire, valves, valve boxes, controllers, nipples, fittings, swing-joints, sprinklers, bubblers, glue, primer and thread sealers. The Contractor may also be asked to provide photographs of other materials, components, parts, assemblies, methods or any other proofs required to document the installation or materials used in any part of the irrigation system.

b. The Contractor shall have available on-site, at all times of work, all construction design documents related to the installation of the complete irrigation system including plan, detail drawings, specifications, addenda and change orders. The Landscape Architect may request confirmation that the appropriate documents and instructions are readily available on-site at any time during a site visit.

3. Verification of mainline, valves and sprinkler head layout:

a. The Contractor shall be aware that other parts of this specification may indicate that certain irrigation components be staked via survey quality methods. The Contractor shall refer to “Irrigation Staking” portion of this specification and ensure that any components, assemblies or piping requiring high-accuracy locations are properly marked as per the specification.

b. The Contractor shall coordinate with the Landscape Architect an inspection of the irrigation system mainline, valves and sprinkler head layout.

i. The Contractor shall insure that the entire mainline routing has been marked in the field using wood stakes at change of direction and painted ground markings for length of run.

ii. The Contractor shall ensure that all valves indicated on drawing have been properly located and marked in the field using wooden stakes or other stable marking materials.

iii. The Contractor shall insure that all rotary heads have been properly laid out and marked with wooden stakes, color-coded (painted) according to individual sprinkler zone.

c. The Contractor shall not proceed with any installation until a written notice to proceed is presented to the Contractor from the Landscape Architect.

4. Hydrostatic Mainline Pressure Test (100psi):

a. The Contractor shall coordinate with the Landscape Architect the hydrostatic mainline pressure test.

i. For irrigation systems with mainline lengths exceeding 800 linear feet, up to (2) individual tests may be scheduled if the Contractor so desires. If the Contractor chooses (2) separate tests, it shall be the responsibility of the Contractor to provide the necessary (temporary) gate valves to separate the tests, even if none are shown on the plan.

b. The Contractor shall call for an inspection once all piping, thrust blocks, joint restraints, service tees and isolation valves have been installed. The mainline shall be connected to a water source, thoroughly flushed, evacuated of all air, capped drip tight and prepared for testing.

i. The Contractor may backfill any portion of the mainline prior to conducting the hydrostatic test, however the Contractor shall be fully responsible for locating and repairing any leaks that prevent an unsuccessful pressure test result. Refer also to Backfilling and Compaction portion of this specification.
ii. The Contractor shall provide a temporary ¼” FIPT connection with shut-off valve directly connected to the mainline piping structure. This ¼” connection will be used by the inspector to attach a digital water pressure recorder.

iii. The Contractor shall insure that the project Superintendent is on-site and that the mainline is fully prepared for pressure testing.

c. Hydrostatic Water Pressure Test: The test will involve the Contractor pre-pressurizing the irrigation mainline piping to approximately 90psi. Once the inspector is on-site, he will install a digital pressure recorder to the ¼” FIPT connection (with isolation valve provided by the Contractor). The inspector shall note the pre-pressurized static water pressure and instruct the Contractor to begin pressurizing the mainline piping to 100psi. The Contractor shall perform the pressurization (with water) through whichever means necessary [hydrostatic pressure pump] to achieve the full 100psi test start pressure. Once the inspector has verified 100psi of static water pressure, the Contractor will be instructed to remove (or isolate) the pressurizing device from the mainline piping structure. The digital pressure gauge will record the static water pressure over a period of (1) hour.

d. If the recorded water pressure drop is less than or equal to 3.0psi, the Contractor will receive a written notice of successful hydrostatic pressure test and a written notice to proceed.

e. If the recorded water pressure drop is equal to or greater than 3.1psi, the Contractor shall make the necessary repairs and reschedule the water pressure test with the Landscape Architect.

i. The Contractor will be billed (by the Landscape Architect) a re-testing fee of $500 per test, plus travel expenses for each subsequent hydrostatic water pressure test.

f. The Contractor shall include a copy of the hydrostatic pressure test record(s) in the “Operations and Maintenance Manual”.

5. Substantial or final completion inspection

a. The Contractor shall coordinate with the Landscape Architect an inspection of the completed or substantially completed irrigation system. Substantially completed means that all parts and components of the irrigation system are installed, functional and undamaged. All sprinklers shall be adjusted, the backflow device shall have been tested and accepted and the irrigation controller is installed (including remote radio kit – if specified) and functioning. The Contractor shall have a complete “red-line” as-built of the installed irrigation system noting any and all changes or deviations from that of the original design.

i. The Contractor shall demonstrate the operation of each zone valve and provide a walkthrough to demonstrate the functionality of each irrigated section.

ii. The Contractor shall demonstrate that all sprinkler heads have the correct nozzle installed and that all pressure regulators are properly adjusted and operating at the designed water pressure.

iii. The Contractor shall demonstrate that all valve box interiors are dry and free from leaks or drips.

iv. The Contractor shall demonstrate the operation of the booster pump (if installed).

v. The Contractor shall provide a copy of the “red-line” irrigation as-builts to the Landscape Architect for inspection and verification.
b. A final inspection report shall be generated and available to the Contractor within a reasonable time period. The inspection report may include “punch-list” items that the Contractor shall address in order to receive final acceptance. The Contractor shall include a copy of the substantial or final completion inspection record in the “Operations and Maintenance Manual”.

3.04 POINT OF CONNECTION INSTALLATION:

A. Point of connection: Install the water source as per the instructions on the construction documents and as per the manufacturer’s recommendations and instructions.

1. Existing Stub-out: Field verify size and condition and proceed with connections required to the stub-out and as called out on the construction documents.

B. Booster pump: Install booster pump as shown on the construction documents and as per the manufacturer’s instructions and recommendations.

C. Test port installation (for hydrostatic pressure test): The Contractor shall provide and install a testing port accessible to the irrigation inspector, for the purposes of hydrostatic pressure testing. The test port shall consist of a direct connection into the mainline piping structure and shall provide a shut-off valve and a ¼” FIPT connection point. The Contractor shall use an already installed service tee or termination point for the mainline connection. The Contractor shall remove the test port make-up components upon successful completion of the hydrostatic testing.

3.05 PIPING SYSTEM INSTALLATION

A. General:

1. Not all product installation specifications listed in this section apply to this system.
2. Reference the drawings for products and installation conditions specific to this project.
3. Materials and equipment shall be installed in a neat and workmanlike manner according to manufacturer’s recommendations and specifications, local and state codes, as shown on the drawings and as specified herein.
4. This Section includes installation specifications for all items installed as a part of the piping structure of the irrigation system. Certain construction procedures or minor equipment installation procedures may have been omitted from these specifications that are necessary for the proper installation of the system.
5. Adverse trenching conditions: No additional costs will be paid if the Contractor encounters any adverse trenching conditions.
6. Excavation and Trenching: Refer to Trenching Section of Technical Specifications.
8. Depth of Bury – Cover of Earth Over Top of Pipe: Refer to irrigation system drawings.

B. Backfilling and Compaction:
1. Upon completion of a particular section of the irrigation system the Contractor may begin partial backfilling (center loading and thrust blocking of the piping structure). It is recommended that the Contractor leave all joints, risers and connections exposed for visual inspection during the hydrostatic testing. Only upon successful completion of the hydrostatic test can the backfill operation be completed for any one particular section. It shall be the responsibility of the Contractor to locate any leaks in the piping structure that cause unsuccessful hydrostatic test results, whether or not it is buried.

2. Backfill around pipe and 6” above pipe cannot contain rocks or stones larger than ½”. Backfill from 6” above pipe to finish grade cannot contain any rocks or stones larger than 2”. If the excavated trench material contains rocks exceeding ½”, screen backfill to comply with criteria above. Remove unsuitable material from the site and dispose of properly.

3. In rocky areas, trench depth shall be six inches below the normal trench depth to allow for six inches of suitable backfill as padding for the pipe. Provide a minimum of six inches of padding on either side of the pipe as a buffer against the rock wall of the trench.

4. Place backfill in horizontal layers not exceeding six inches in depth; thoroughly tamp and compact with manual or mechanical compaction equipment to a minimum 95% standard proctor density. Place to original ground level or limits designated on the drawings. If settlement of trenches occurs within one year from date of completion, refill trenches and sod repaired areas.

C. Utility Crossing:

1. Any existing utility that will be crossed with any part of the irrigation system piping or wiring shall be hand-trenched only.

2. Properly locate and mark all utilities (public and private) prior to trenching.

D. PVC Pipe Installation:

1. Install in accordance with the manufacturer’s recommendations and procedures.

2. Before installation, clean inside of the pipe of dirt and foreign matter and keep in a cleaned condition during and after installation of the pipe. Seal open ends of pipe and fittings so that trench water, earth, or foreign substances will not enter the pipe or fittings. Where pipe ends are left for future expansion or connections, valve and cap as indicated on the drawings.

3. The full length of each section of the pipe shall rest solidly upon the pipe bed, with recesses excavated to accommodate bells, joints, and couplings. Do not lay pipe in water or when trench or weather conditions are unsuitable for the work. Remove water to keep the bottom of the trench or excavation free and clear of water during the progress of the work. Pipe shall not be laid if the temperature is 32F or below. Install pipe to provide for expansion and contraction as recommended by the manufacturer.

4. The minimum horizontal clearance between lines in the same trench shall be four inches (4”). Pipe shall be installed in a straight line with changes in direction made with elbows and tees. If manual drains are installed in the system, install piping to insure a positive slope to the drain so that all water can be drained from that part of the system.

5. If curving of the pipe is necessary due to particular angles and site conditions the Contractor shall notify the Landscape Architect and receive written authorization prior to installing. If unauthorized/unwarranted bending of the pipe is discovered, the Contractor shall retrench and reinstall the piping as directed for any particular section or length at no additional cost to the owner.

6. To accommodate repairs that may occur in the future, bending or curving of the pipe beyond the recommended limits of the manufacturer will not be permitted.

E. Ductile Iron “O-Ring” Gasket Fitting Installation:
1. Service saddle: Install service saddle as per the manufacturer’s installation instructions and recommendations.
 a. Cut pipe squarely and bevel plain end of pipe. Bevel should be approximately 15 degrees and 3/4" long. Remove any burrs and ridges on pipe.
 b. Measure bell depth and mark on pipe for installation depth reference.
 c. Clean all debris from the bell and groove areas of the fitting. Make sure no trash; sand or debris is beneath the gasket.
 d. Check position of gasket so that it’s completely seated in the groove with no raised areas. Lubricate the gasket and the plain end of the pipe with the lubricant supplied by the pipe manufacturer.
 e. Align pipe into fitting and push together by hand or with pry bars on end of the fitting or with two pry bars using the lugs on the fitting. Insert pipe until reference line mark is even with edge of fitting bell.
 f. Install pipe or valve restraints as required. Refer to the fitting manufacturer’s installation procedures and install accordingly.
 g. To reduce corrosion do to adverse soil conditions, wrap the entire ductile iron fitting in 6mil plastic sheeting. Secure the plastic wrap to the piping using duct-tape, plastic zip-ties or similar. The plastic wrap shall be installed and secured in such a way as to prevent direct contact with any metal portion of the fitting and/or restraint with the surrounding soil.
 h. When "O"-ring gasket pipe or fittings are used in the installation, provide concrete thrust blocks to resist system pressure forces.

F. Joint Restraints and Concrete Thrust Block Installation:

 1. Joint restraint installation: Install joint restraint systems at mainline tees, elbows and caps, also at pipe to fitting or valve to fitting connections. Restrain valves to fittings, restrain pipe to valves and restrain piping installed directly into a mainline fitting. The installation of restraints does not negate the need for concrete thrust blocking.
 2. Concrete thrust block installation:

 a. Construct thrust blocks at mainline fitting direction changes, such as tees, elbows, reducers, caps, unrestrained isolation valves, terminations or at any other points of the system that will result in an unbalanced thrust line.
 b. For proper thrustblock size, refer to Harrington Corp.’s Thrustblock Sizing Guide For Ductile Iron Fittings.
 c. Cut a properly sized concrete form around the fitting in the undisturbed native soil. Do not form the concrete thrustblock in uncompacted backfill material.
 d. Wrap the fitting and pipe in 6-mil poly plastic sheeting and secure so that concrete does not directly contact the fitting or piping.
 e. Pour properly mixed 3000psi concrete into the undisturbed, native soil form and allow for proper curing.
 f. Thrustblocks shall be neatly formed, with minimal overpour and shall be level and smoothed on the exposed surface. Do not obstruct any outlets intended for future connections.

G. Service Saddle Installation (written approval required):

 1. Service saddle: Install service saddle as per the manufacturer’s installation instructions and recommendations.
a. Clean the pipe surface thoroughly, particularly in the area where the saddle gasket will seal.
b. Check the saddle gasket for proper positioning in the saddle body. Make sure the gasket is
nested within the saddle groove and retained by the gasket retention tabs.
c. Lubricate the pipe and face of the gasket with lubricant recommended by the saddle manu-
facter. Mount the saddle body with the gasket in place on the pipe.
d. Place the lower saddle clamp beneath the pipe and hook the hinged end into the slot of the
upper saddle main body.
e. Insert the bolt connector(s) and torque as per the manufacturers recommendations. Do not
over torque the saddle bolts. The pipe will expand somewhat when line pressure is applied.
f. Drill an appropriately sized hole, as per manufacturers recommendations in the pipe through
the saddle outlet hole. Do not allow the hole-coupon to fall back into the pipe.
g. To reduce corrosion do to adverse soil conditions, wrap the entire service saddle fitting in
6mil plastic sheeting. Secure the plastic wrap to the piping using duct-tape, plastic zip-ties or
similar. The plastic wrap shall be installed and secured in such a way as to prevent direct con-
tact with any metal portion of the fitting and/or restraint with the surrounding soil.

H. Sleeve Pipe - Hardscape Crossings:

1. New Construction:

a. Sleeve all hardscape crossings in the early stages of construction rather than installing the
pipe after the hardscape is in place.
b. Sleeve pipe shall be two sizes larger than the pipe to be sleeved. Sleeve pipe up to 4” shall be
Schedule 40 PVC solvent weld. Sleeve pipe 6” and larger shall be Class 200 PVC gasket end.
c. Wire shall be installed in a 2” Sch.40 PVC sleeve unless noted otherwise on the plan.
d. Install the piping and wire in separate sleeves.
e. The Landscape Architect shall approve all pipe crossings and methods before any work or ex-
cavation takes place in these areas.

2. Existing Concrete or Asphalt with crossing greater than six feet (6’) in width:

a. All sleeve crossings shall be made by means of mechanized directional boring. The Contractor
may elect to bore each sleeve pipe separately or use one large bore with sleeve to install
more than one sleeve pipe or conduit.
b. The bore shall be done at the appropriate depth of bury for the particular utility (lateral,
mainline or electrical) or at the deepest depth of bury if multiple utilities will be installed in
the same bore sleeve.
c. Locate and mark all existing utilities prior to boring.
d. No type of water-jet bore methods may be used.

3. Existing Concrete or Asphalt with crossing less than six feet (6’) in width:

a. The Contractor shall use a mechanical drill bore or impact bore only. The Contractor shall not
use any type of water-jet bore method.

4. Alternative sleeve crossing method – by Landscape Architect approval only:
a. With approval from the Landscape Architect only, the Contractor may saw cut the existing concrete or asphalt, excavate sleeve trench, install sleeve, backfill, compact and patch concrete or asphalt.

b. The saw cut(s) shall be clean and straight. The Contractor shall properly dispose of the removed material.

c. The patch shall be configured of the same material, and be of the same color, texture and finish as the existing material.

d. Sleeve length past hardscape edges – The ends of each sleeve pipe shall extend or be trimmed to 6” past the edge of concrete of asphalt unless otherwise directed by the Landscape Architect.

I. Expansion and Contraction Relief: On long runs of solvent welded PVC piping greater than 300’, install a Spear’s Flo-Span expansion coupling every 100’ or as directed by the Landscape Architect.

J. Flushing:

1. Thoroughly and completely flush all debris from all piping:

 a. After installing system piping and the trenches are partially backfilled, the piping system shall be flushed at full water pressure volume. Do not install automatic valves, air release valves, pressure regulation valves, quick coupler valves, sprinklers, bubblers or drip emitters until after all piping has been thoroughly flushed and tested.

 b. If water pressure without the emission devices installed is not sufficient to provide adequate water flow from end risers, cap off enough risers closest to the water source to provide adequate flushing of the end riser assemblies.

 c. After the system is thoroughly flushed, risers shall be capped water-tight, and the system pressure tested in accordance with the testing section of these specifications.

 d. At the successful conclusion of the pressure test, install valves and emission devices and complete the backfill process.

 e. No flushing will be allowed through any emission device or valve other than isolation (gate or straight or ball). Any component other than isolation showing evidence of flushed debris shall be rejected and replaced at the Contractor’s expense.

K. Thread Sealants:

 1. For threaded connections joining PVC and metal threads use Spears Blue 75 Weld-On “All Seal” thread sealant compound.

 2. For sealing threads of Cycolac, ABS, or plastics other than PVC, use Teflon tape only.

 3. Metal to metal connections shall be sealed with Spears Blue 75 Weld-On “All Seal” thread sealing compound.

 4. Caution: The use of sealers and compounds on certain plastics can cause thread failure and can void the warranty of the component. Never use any type of sealer or lubricator other than Teflon Tape at any automatic valve or sprinkler connection.

L. Warning Tape Installation:

 1. Install 9” deep in all trenches (when specified on plan, detail drawings or notes).

 2. Trenches that contain mainline/submain pipe, use appropriately labeled “Irrigation” warning tape.

 3. Trenches that contain non-potable, reclaimed or effluent water pipe (mainline and lateral), use appropriately labeled “Non-Potable” purple warning tape.
4. Trenches that contain 120V or greater electrical, use appropriately labeled and colored “Electrical” warning tape.

3.06 VALVE AND COMPONENT INSTALLATION

A. Automatic Control Valve Installation:

1. Automatic control valves shall be of the type and size as indicated on the drawings or approved equals and shall be installed where shown on the drawings. Follow manufacturer installation recommendations and these specifications.

a. Adjust the upper valve box to finish grade. There shall be only one valve installed per valve box.

b. Provide 24" of coiled wire slack for each wire at all valve locations. Connect remote control valves to controllers in the numerical sequence as shown on the drawings. Identify each automatic valve with an identification tag attached to the solenoid wire at the solenoid with the controller number followed by the controller station number it is wired to. The controller station ID tags shall be manufactured by T. Christy Enterprises or equal.

c. Valves in a group shall be installed no closer than 24" to accommodate removal of a valve assembly without having to rebuild an entire manifold group.

d. Pressure regulators on automatic valves shall be set to the sprinkler head operating pressure indicated on the drawings. The operating pressure of the automatic valve shall be set by the Contractor utilizing a pitot tube and/or pressure gauge at the farthest operating sprinkler from the zone control valve.

e. Varmint deterrent: If indicated on the detail drawings install wire screen or other specified material as per the instructions.

B. Air Release Valve Installation:

1. Install air release valves as per the manufacturer’s recommendations and instructions.

a. Install air release valves on the mainline piping at the locations indicated on the drawings and only at locations approved by the Landscape Architect. Before installing air release valves, flush system of all debris.

b. Install air release valve on ductile iron mainline service tee for mainline sizes 4” and larger.

c. Install air release valve on galvanized mainline tee for mainline sizes 3” and smaller.

C. Manual Drain Valve Installation (1”):

1. Install manual drain valves as per the construction documents – use brass straight valve.

a. Construct gravel sump under each manual drain valve of the size indicated in the drawings. Cover with landscape fabric to prevent backfill dirt from filling the voids created by the gravel.

b. The locations of the manual drain valve assemblies shown on the drawings are schematic and approximate representations only.

c. The actual locations shall be determined in the field stakeout process (low ends).

d. If conditions are such and approval has been given by the Landscape Architect or noted on the drawings, the outlets of the manual drain valves may be piped to a drainage tile, drainage ditch, pond or other drainage point that would provide proper drainage.

e. All manual drain locations must be approved by the Landscape Architect before installation.
D. Flush Valve Installation (4”):

1. Install 4” flush valves as per the construction documents with access sleeves, piping, fittings and valve boxes.

 a. Install discharge piping with positive slope for drainage. Install flush piping to acceptable discharge area and daylight or install close outlet discharge piping as per drawings.

E. Brass Gate Valve Installation (3” and smaller):

1. Install brass gate valves as per the construction documents.

F. Iron Body Gate Valve Installation (Spigot x Bell – 4” – 12”):

1. Install iron body gate valves as per the construction documents with access sleeve and valve box.

 a. Install spigot end into specifically manufactured bell end mainline fitting with joint restraint tabs, ears or lugs.
 b. Properly secure manufacturer approved joint restraint system from mainline fitting to spigot end of iron body gate valve.
 c. Properly secure manufacturer approved joint restraint system from bell end of iron body gate valve to PVC mainline piping.
 d. Wrap all exposed metal surfaces with 6mil plastic sheeting and secure with duct tape, zip tie or similar. Ensure no contact of metal surfaces with soil.

G. Iron Body Gate Valve Installation (Bell x Bell – 4” – 12”):

1. Install iron body gate valves as per the construction documents with access sleeve and valve box.

 a. Properly secure manufacturer approved joint restraint system from each bell end of iron body gate valve to PVC mainline piping.
 b. Wrap all exposed metal surfaces with 6mil plastic sheeting and secure with duct tape, zip tie or similar. Ensure no contact of metal surfaces with soil.
 c. Install properly sized concrete thrust block with 3/8” rebar ties (crossed) as per construction documents.

H. Brass Angle Valve Installation (3” and smaller):

1. Install brass angle valves as per the construction documents with access sleeve, nipples, fittings, piping, and valve box.

I. Unitized Angle Valve Installation (3” and smaller):

1. Install unitized brass angle valves as per the construction document and as per the manufacturer’s instructions.

 a. Insert unitized angle valve into specifically manufactured mainline service tee with restraint system tabs, ears, lugs or collars.
 b. Rotate valve outlet to proper angle for PVC piping connection.
c. Properly install manufacturer approved restraint system for service tee to valve connection and for valve to PVC piping connection.

d. Wrap all exposed metal surfaces with 6mil plastic sheeting and secure with duct tape, zip tie or similar. Ensure no contact of metal surfaces with soil.

J. Filter Installation (in-line style):

1. Install filter as per the construction documents and as per the manufacturer’s instructions.

 a. Provide acceptable clearance on all sides of assembly for complete removal and servicing of filter element.

K. Quick Coupler Installation:

1. Install quick coupler as per the construction documents and as per the manufacturer’s instructions.

 a. Install quick coupler on unitized swing-joint assembly with brass FIPT connection.

 b. Properly install a manufacturer approved stabilizer wing and secure to quick coupler valve at the manufacturer approved location. Note: The stabilizer wing may have a particular connection style that will deform the quick coupler outlet if improperly installed or over tightened. Replace quick coupler if damaged.

 c. Install Carson #910 10” round valve box flush with finish grade and so that quick coupler key can be fully inserted and turned without binding on valve box top.

L. Pressure Regulator Installation:

1. Install pressure regulator as per the construction documents and as per the manufacturer’s instructions.

 a. Set discharge pressure to the settings indicated on construction documents. If no settings are found, the Contractor shall submit a “Request For Information” to the Landscape Architect and shall set the regulator according to those instructions.

M. Flow Meter Installation:

1. Install flow metering device as per the construction documents and as per the manufacturer’s instructions.

 a. For flow sensing installations - properly interface the flow sensor with the irrigation controller or control panel. The Contractor shall utilize the proper communication cable as recommended by the flow meter/sensor manufacturer.

 b. For totalizing meter installations, insure that the meter readout is fully accessible (readable), clean site glass, properly secure site glass lid closed (if so equipped) to avoid damage.

N. Valve Box Installation – Carson #1324-12/15:

1. Install filter as per the construction documents.

 a. Install 15” box on base of ¾” crushed gravel, 6” deep, tamped and leveled as per the drawings. Use brick support blocks at each corner to prevent settling.
b. Partially back-fill around 15” box and compact as necessary.
c. The 15” box should not contact or rest on any piping.
d. Install four additional support blocks onto compacted soil at a depth of approximately 12”. Blocks should be placed at each corner level with each other, so as to provide a solid base for the 12” box.
e. Install 12” box and adjust support blocks to proper grade. Upper 12” box should be level in all directions or installed at the same slope as surrounding grade. The upper box shall be square with nearby hardscape edges such as sidewalk or curb.
f. When multiple boxes are installed in a group, the boxes should have evenly spaced distances between each other (24” minimum) and all boxes should be square with each other, the interior valve components and also square with nearby hardscape. If a conflict arises as to the proper orientation of multiple valve box installations, the Contractor shall submit a “Request For Information” to the Landscape Architect. The Contractor shall follow the installation instructions given by the Landscape Architect.

O. Valve Box Installation – Carson #1419-18:

1. Install 18” box on base of ¾” crushed gravel, 6” deep, tamped and leveled as per the drawings. Use brick support blocks at each corner to prevent settling.
2. The box should not contact or rest on any piping.

P. Valve Box Installation – Carson #910:

1. Install 10” round valve box as per the drawings. If indicated on detail drawings, use brick support blocks on two sides, across from each-other to prevent settling.

3.07 SPRINKLER HEAD AND BUBBLER INSTALLATION

A. General:

1. Sprinkler heads and bubblers shall be of the manufacturer and model number specified on the drawings or approved equal, installed to grade, level and plumb in all directions unless installed on sloping terrain.
2. For sprinklers installed on sloped terrain, the sprinkler should be partially tilted with the grade of the slope. Angle the sprinkler so that it is approximately in-between flush and perpendicular with the axis of the slope. Install in such a manner so that the exposed edge of the sprinkler does not provide a trip hazard and does not stick out enough to be damaged by mowing equipment. Use backfill material to soften the grade around the sprinkler if necessary.
3. Sprinkler head spacing shall not exceed the typical spacing shown on the drawings and shall be in the relative location and configuration as shown on the drawings (refer to stakeout procedure in other parts of this specification).
4. Sprinkler heads shall be installed 8” from curbs, walks, driveways, etc.
5. Sprinklers installed next to walls or buildings shall be installed no closer than five feet (5’) unless otherwise indicated on the drawings or as determined by final stakeout procedure.
6. Sprinkler heads shall be stabilized by compacting the soil around the sprinkler heads to near original soil density.
7. System piping shall be flushed thoroughly before the sprinkler heads are installed. No flushing will be allowed through the sprinkler heads.
8. Seal threads between the sprinkler and/or bubbler and the riser or swing joint with Teflon tape only. No pipe dope or sealers other than Teflon tape will be allowed on sprinklers, bubblers or plastic automatic valves.

B. Swing Joint Assemblies:

1. Install sprinkler heads on swing joints in accordance with the manufacturer’s recommendations.

C. Bubbler Assemblies:

1. Install the bubblers as per the drawings. Three bubblers are required for each tree and one bubbler for each shrub unless otherwise indicated on the drawings.

2. Tree Bubblers:
 a. Arrange three (3) bubblers in a triangle shape around the dripline of the tree. If the tree is installed on a slope, two of the bubblers shall be positioned at the high end of the slope and one at the lower end.
 b. Install each bubbler inside of 4” perforated drainpipe. The drainpipe (with cap) should be flush with finish grade and the bubbler should be installed to a height of 2” below the top of drainpipe. The drainpipe length shall vary depending upon the depth of bury for the lateral pipe. The perforated drainpipe shall not rest on lateral pipe and shall be cut or notched 1” above lateral pipe.
 c. The perforated drainpipe shall be filled to 3” below the top of pipe with ½” rounded gravel, leaving the bubbler nozzle exposed. The outside of the drainpipe shall contain a layer of ½” rounded gravel extending 3” from edge of the drainpipe, all the way around and to the particular depth of the drainpipe. The gravel packing on the exterior of the drainpipe shall be constructed in such a manner as to minimize mixing the gravel with loose backfill material.
 d. Install slotted “drain” style cap/lid on top of perforated drainpipe.

3. Shrub Bubblers:
 a. Install one (1) bubbler at the dripline of shrub. If shrub is installed on slope, install bubbler at the high end of the slope.
 b. Install bubbler nearly flush with finish grade, leaving ½” of exposed bubbler nozzle.

D. Nozzle Arc and Radius Adjustment:

1. Adjust sprinkler nozzles for the radius and arc of coverage that will provide the most efficient performance and minimize over-spray.

2. On sprinklers with an adjustable trajectory, adjust to avoid spraying directly on the foliage of trees and shrubs.

E. Nozzle Changes:

1. Make changes to improve system performance if so directed by the Landscape Architect as part of the normal Scope of Work of this Section.

3.08 CONTROL SYSTEM INSTALLATION

A. Controller Installations:
1. Unless specifically called out in the drawings, the location of the controller or controllers indicated on the drawings are approximate. The actual locations shall be determined in the field stakeout process. Install controllers and wire according to the manufacturer’s recommended procedures. Connect remote control valves to the controller in the numerical sequence shown on the drawings or as directed by the Landscape Architect.

2. Install pedestal mounted controllers on a 4" thick concrete slab and as recommended by the manufacturer. Clean up and dress around the slab upon completion of the work.

3. Install grounding system - Electrical ground resistance must be less than 10 ohms when measured with a Biddle ground testing instrument or similar testing device. See also Surge Protection, Grounding and Ground Testing, in other parts of this specification.

4. In the case of multiple controller installations in the same location, each controller shall have separate common wire entirely independent of the common wires of all other satellites. Only those automatic control valves that are being controlled by one specific controller shall be connected to that controller’s common ground wire system.

5. Exposed 24-volt wiring installed within a building shall be installed in a metal electrical conduit terminating 30” below ground after penetrating the building wall. Wall penetration conduit holes shall be sealed with silicon sealer between wall and conduit as well as the end of the conduit exiting below ground or as directed by the Landscape Architect.

B. Power Source Connection:

1. A qualified electrician shall make the 120-volt power connection for the irrigation system controller or controllers at the power location indicated on the drawings or as provide by the Contractor.

C. System Programming:

1. Contractor to program every controller in the system as per the instructions on the plans or as directed by the Landscape Architect.

D. Surge Protection, Grounding, and Ground Testing:

1. Install grounding system per the requirements of the NEC and current local electrical codes.

2. Install surge protection ground rods, ground plates, ground wires and devices as shown on the drawings and as recommended by the manufacturer of the control system. The ground resistance of the controllers shall be tested with a Biddle ground test megger # 250260 or similar ground testing equipment such as the AEMC model 3710 clamp on ground tester. A resistance reading of 0 – 10 ohms is considered excellent, 11 – 20 ohms is acceptable and 21 – 30 ohms is considered marginal. Obtain a ground resistance less than 10 OHMS to meet this requirement.

3. To improve grounding, install 50’ of bare copper wire 9” deep (trench) into an irrigated area to provide maximum earth contact.

4. Incoming wiring to the irrigation controller shall be installed outside the area of influence of the grounding grid to avoid re-injecting discharged energy back into the wiring circuits. Avoid sharp bends of the grounding conductors. 90 degree bends of the grounding wire conductors shall have a radius of no less than 8”.

5. The moisture content within the sphere of influence of the grounding electrodes should be no less than 15% by weight. Mix earth enhancement materials according to the manufacturer’s recommendations.

6. Test and certify grounding results. Place a copy of the test result certificate into the Operations and Maintenance Manual.
E. Wire Installation – 24-Volt Wiring From Controllers to Valves:

1. Unless otherwise specified on the drawings, common wires shall be #12 white and station control wire shall be #14 red.
2. Wire automatic valves individually. If drawings indicate that certain valves run on the same station, station wires will be wired together at the controller terminal strip and not hard wired in field.
3. Unless specified to be installed in conduit, loose lay 24-volt wire in trench bottom next to and on the north and east sides of the pipe with the 120-volt wiring on the other side. Do not install the 120-volt wiring and the 24-volt wiring on the same side of the pipe.
4. If wire path is shown or indicated on drawing, install as routed and/or lay cable in trench with an expansion loop placed every 200' to minimize backfilling and compaction stress on the wire.
5. Create wire expansion loop consisting of 10 turns of wire around a 1" PVC pipe at the splice location.
6. No wire splices permitted between the controller and the valves or sprinklers.
7. No buried wire splices will be allowed. All splices shall occur in the valve box.
8. Each controller shall have a separate 24-volt common wire from that of any other controllers. In no case shall the 24-volt common wires of individual controllers be connected together sharing a common wiring system.
9. Burial depth of the wire shall be that of the mainline piping if installed in the same trench or 30" if installed in a trench for wire only. Bury deeper if required by NEC or local code.
10. Test wire prior to backfilling to insure continuity from valve location to controller location. Any wire not indicating continuity shall be replaced immediately.

F. Wire Installation – Communication cables or other specialty wire:

1. Install as per manufacturer’s instructions and or specifications

G. Wire Installation – 120-Volt Wiring to Controllers and Backflow Preventers:

1. Install 120-volt controller and backflow preventer power wiring as direct burial wire or in schedule 40 PVC gray electrical conduit as required by the National Electrical Code and any local codes that may apply; conduit size shall conform to the NEC for the number, size and type of wire conductors installed in the conduit.

H. Wire Splices 24V / 120V:

1. Install splice kits per manufacturer’s instructions.

END OF SECTION 328400
SECTION 32 9113 – SOIL PREPARATION

PART 1- GENERAL

1.1 SUMMARY
Work to be done includes all labor, materials, transportation, equipment and services required to complete the soil preparation. Execute labor to achieve soil preparation, complete, as shown and as specified planting as indicated on the Construction Drawings, and as specified herein. Work includes, but is not necessarily limited to the following items: soil amendments, and mulches.

1.2 RELATED WORK
The following items of related work are specified and included in other sections of the specifications:

A. Division 32, Section 329400: Planting
B. Division 32, Section 322945: Native Seeding

1.03 REFERENCES
The following standards will apply to the work of this Section:

A. MSA: Methods of Soil Analysis
B. ASTM: American Society for Testing and Materials

1.04 SUBMITTALS
At least thirty (30) days prior to ordering any materials, the Contractor shall submit three (3) sets of the items specified below to the Owner for review and approval. No material shall be ordered, delivered or any work preceded in the field until the required submittals have been reviewed in its entirety and stamped approved. Provide samples and information for the following.

A. Samples:
1. Compost, one (1) gallon container
2. Mulches, one (1) quart size container of each as noted on the drawings

B. Testing Results:
1. Imported Soils
2. Soil amendments
3. Fertilizer

C. Certifications:
1. Certify strict compliance with accepted soil mixes and amendments, including rate of application.

1.05 QUALITY ASSURANCE

A. Testing Agency: Approved by the Owner and paid for by the Contractor.

B. General: Do not work soil when moisture content is so great that excessive compaction will occur, nor when it is so dry that dust will form in air or that clods will not break readily. Apply water, if necessary, to bring soil to an optimum moisture content for tilling and planting.
C. The work of this Section shall be performed by a Contracting firm that has successfully installed work of a similar quality, schedule requirement, and construction detailing with a minimum of five (5) years experience.

D. The Contractor shall examine all areas of work and surfaces before proceeding with any work of this section. Any defects such as incorrect grading and inadequate drainage shall be reported to the Owner prior to beginning work.

E. The Contractor shall secure Blue Stakes permit number for the project to certify notification of all utilities. The Contractor shall not commence work until Blue Stakes has responded.

F. It is the intent of this specification that all material herein specified and shown on the construction documents shall be of the highest quality available and meeting the requirements specified.

G. All work shall be performed in accordance with the best standards of practice relating to the trade.

H. The Contractor shall comply with all rules, licensing, regulations, laws and ordinance of the City, County and State, and other authorities having jurisdiction over this project site.

1.06 DEFINITIONS

A. Existing soil: Area of undisturbed native soil where no rough grading is to be done. No soil is to be placed. Only surface cultivation and soil amending are included in this Section. See Drawings.

B. Subgrade: Soil level resulting from the rough grading work under another Section. Cultivation of subgrade areas prior to amending is included in this section.

C. Imported Soil: Imported soil stockpiled for spreading over prepared subgrade. Soil imported and stockpiled under this Section, shall be spread and amended as work under this Section.

1.07 SUBMITTALS

A. Samples: Submit two (1) pound sample of imported soil.

B. Soils Test Analysis Reports: Provide soils tests analysis of imported soils to be used in planting areas. Soil amendments and additives shall be adjusted to the results of the soils test as directed by the Owner.

PART 2 – PRODUCTS

2.01 MATERIALS

A. Imported Soil:

1. Quantity: The approximate quantity of imported soil will not be known until demolition and rough grading have been completed under earthwork.

2. Composition: Fertile, friable, well-drained soil, of uniform quality, free of stones over 1 in. diameter, sticks, oils, chemicals, plaster, concrete and any other materials deleterious to healthy plant growth.

3. Analysis: Obtain an agricultural suitability analysis of the proposed soil from an accepted, accredited Testing Agency at Contractor’s cost.
4. **Test Results:** Request Testing Agency to send one (1) copy of test results direct to the Owner and one (1) copy to the Contractor. Imported soil shall be amended per soils analysis report.

2.02 **SOIL MIXES**

A. **Plant backfill mix:** Shall consist of four (4) inch depth of compost tilled in twelve (12) inches in to the soil.

2.04 **ACCESSORIES**

A. **Water:** Contractor to supply as available until turn over of project to Owner. Transport may be required.

PART 3 – EXECUTION

3.01 **SOIL MOISTURE CONTENT**

A. **General:** Do not work soil when moisture content is so great that excessive compaction will occur, nor when it is so dry that dust will form in air or clods will not break readily. Apply water, if necessary, to bring soil to an optimum moisture content for tilling and planting.

B. **Range:** Maintain within 2 percent above or below optimum moisture content during the work.

3.02 **CLEARING AND CULTIVATION**

A. **Clearing:** Clear planting areas of stones 2 in. diameter and larger, weeds, debris and other extraneous materials prior to soil preparation work.

B. **Cultivation of Imported Soil:**

1. **Cultivation:** Till or loosen soil to receive planting to a depth of twelve (12) inches immediately prior to applying soil amendments.

C. **Cultivation of Subgrade:**

1. **Verification:**
 a. Verify that subgrades for installation of soil have been established under rough grading. Do not spread soil prior to acceptance of subgrade work.
 b. **Depth:** Verify that subgrades are within required subgrades.

2. **Cultivation:** Rip or cultivate subgrade in planting areas to a depth of twelve (12) inches immediately prior to spreading imported amended soils.

3.03 **SPREADING OF AMENDED IMPORTED SOIL**

A. **General:** Spread amended imported soil over accepted subgrade prior to incorporating amendments.

B. **Restrictions:** Do not commence spreading of amended imported soil prior to acceptance of sub-soil cultivation above. Do not place soil under muddy or frozen conditions.

C. **Soil Depth:** Refer to finish grade and planting details per the Drawings.
3.04 SOIL AMENDMENT

A. **Amending of Soil**: Follow recommendations of soil tests

1. **Preparation**: Do not commence amending of imported soil prior to acceptance of final subgrades. Do not work soils under muddy or frozen conditions.

2. **Soil Amendments**: Incorporate by tilling amendment into the top (12) inches of imported soil in all planting areas.

3.05 FIELD QUALITY CONTROL

A. **Tests**: Right is reserved to take samples of soil mixes prepared soil for testing for conformity to Specifications.

B. **Rejected Materials**: Remove off site at Contractor’s cost. Pay cost of testing of materials, not meeting Specifications.

3.06 CLEAN-UP

A. **After completion of all soil preparation operations and before acceptance of the work, the Contractor shall remove all debris, rubbish, etc. from the site in a legal manner. The premises shall be left clean, presentable, and satisfactory.**

END OF SECTION 329113
SECTION 329400 - PLANTING

PART 1- GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division-1 Specifications sections, apply to work of this section.

1.2 SUMMARY

A The work of this section includes furnishing all trees, shrubs and other materials necessary to complete the landscape planting in accordance with the specifications and drawings contained in the Contract Documents. This shall include all labor, equipment and performance of operations including planting, mulching, fertilizing, watering, cleanup of planting areas and other related work as specified herein.

B. Related Work Specified Elsewhere:

1. Division 32, Section 328400 – Landscape Irrigation System
2. Division 32, Section 329113 – Soil Preparation
3. Division 32, Section 322945 – Native Grass Seeding

1.3 REFERENCE STANDARDS

A. American Standards for Nursery Stock (ANSI A 300,) American Association of Nurserymen, Washington, D.C.

B. ANSI A 300, ANSI Z 133.1 and ANSI Z60.1 - 2004

E. MSMT603 New Mexico Standard Method of Tests (SHA).

1.4 QUALITY ASSURANCE

A. Contractor Qualifications: All work specified herein shall be performed by a landscape contractor with a minimum of five (5) years of experienced with the type and scale of work required and having equipment and personnel adequate to perform the work satisfactorily.

B. Source Quality Control:

1. Compliance with Laws. All plant materials shall comply with State and Federal Laws, with respect to inspection for disease infestation.

2. Plant Quality Standards: All plant material shall have been grown or dug and burlapped meet to standards set by American Association of Nurserymen and ANSI A 300.

3. Tagging of Trees. The Contractor shall submit to the Landscape Architect, at least one week in advance of tagging date, an itemized list of trees along with a notice as to where and when the nursery inspection of trees shall may be made. The accepted trees will be tagged by the Landscape Architect and Owner for delivery to the site.
4. Plant Inspection: Inspection of all plant materials will be made for size, vigor, representativeness of species and variety, injury, condition of ball and roots, or latent defects. Inspection at delivery does not preclude the possibility of rejection of material after installation.

5. Substitutions. Substitutions of any plant materials requires the written approval of the Landscape Architect prior to ordering plants. Requests for substitutions must be submitted with any cost or quantity adjustments for approval.

6. Analysis and Standards: All packaged standard products shall have manufacturer's certified analysis. For other materials, provide analysis if required in these specification. Analysis is to be by recognized laboratory and made in accordance with methods established by the Association of Official Agricultural Chemists.

7. Tagging or Labeling of Plant Materials. All plant materials shall be true to species, variety and legibly tagged with origin, name and size of material. These tags shall be durable labels marked in weather resistant ink and securely attached to each plant of a single species, variety and size identification. They will remain on plants through final inspection.

1.5 SUBMITTALS

A. Qualifications of Landscape Contractor. Submit Contractor's qualifications showing experience, quality, and capabilities as noted in Quality Assurance.

B. Plant Sources. Submit for approval by the Landscape Architect the nursery or sources for the plant materials to be used in the project.

C. Plant Photos. Submit photographic samples of representative trees from the plant sources. Photos shall include a scaled ruler or yardstick in the photo. The photos shall demonstrate the quality, size, and health of trees to be used in the project.

D. Samples. Submit one (1) cubic foot sample of each type of mulch specified on the Drawings to the Landscape Architect for approval.

E. Product Data/Sources: Submit two copies of product names, literature and application rates for fertilizer, anti-dessicant and amendments.

F. Maintenance Materials: Submit two copies of typewritten instructions bound in three-ring binder of recommended landscape maintenance procedures to be followed by the Owner for one full year. Submit prior to expiration of required maintenance periods.

1.6 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Delivery/ Storage of Materials

1. Delivery of Shipment to Site. The Contractor shall promptly notify the Landscape Architect in advance of the time and manner of delivery of plant materials. The Contractor shall furnish, at the time of notice, an itemized list, in duplicate, of the actual quantities of plant materials in each delivery, in order to expedite the required inspection at the point of delivery. Plants rejected at this inspection any time prior to planting shall be removed immediately from the planting area. When shipment is made, all plant materials shall be packed to provide made in a closed vehicle or plants shall be completely covered to prevent drying or other wind damage. Particular care should be exercised in digging, wrapping and binding of plants to insure safe loading and shipment. Mushroomed or cracked rootballs shall be unacceptable for planting.

2. Packaged Materials: Deliver packaged materials in containers showing weight, analysis and name of manufacturer. Protect materials from deterioration during delivery, and while stored at site.
B. Handling Materials:

1. Trunks, branches, and root balls shall not be damaged during lifting and planting operations.
2. Handle container-grown stock only in containers.

1.7 JOB CONDITIONS

A. Existing Conditions:

1. General: Proceed with and complete landscape work as rapidly as portions of site become available.
2. Determine the acceptability of each planting site and subgrade prior to the start of planting work.
3. Utilities: Locate all existing underground utilities in the construction area as accurately as is possible. Perform work in a manner, which will avoid damage to underground utilities. Hand excavate as required. Any damage to the utilities shall be repaired by the Contractor at his own expense to the satisfaction of the Owner.
4. Grade Stakes: Maintain grade stakes set by others until removal is mutually agreed upon by parties concerned.
5. Excavation: When conditions detrimental to plant growth are encountered, such as rubble fill, adverse drainage conditions or obstructions, notify the Landscape Architect before planting.

B. Protection/Sequencing/Scheduling:

1. Protect all existing items to remain.
2. Ensure proper timing of each phase of work in relationship to the normal planting season for each type of planting work.
3. Coordinate planting with the required maintenance period.
4. Coordination with seeding and/or sodding: Plant trees and shrubs after final grades are established and prior to seeding and/or sodding, unless otherwise accepted by the Landscape Architect. If planting of trees and shrubs occurs after seeding and/or sodding work, protect such areas and promptly repair damage resulting from planting operations.

1.8 GUARANTEE/WARRANTY

A. Warranty trees, shrubs and ground covers through maintenance period and until final acceptance.

B. Replace dead or unhealthy trees and shrubs at the end of warranty period.

C. Only one replacement per plant will be required during the warranty period, except for losses of original or replacement material due to failure to comply with the specification requirements.

PART 2 - PRODUCTS

2.01 PLANT MATERIALS

A. Plant Materials. All plants shall be as specified on the Planting Plans and shall be healthy, vigorous and representative of the species and variety. They shall have normal, well developed branch and root systems. All plants shall be free of mechanical injury, free of sun or frost damage, free from insects, insect eggs and without disfiguring knots or other objectionable defects. All plant materials shall be selected for quality of the specimen. Plant material shall be nursery-grown.
B. Growing Conditions. Trees shall have been grown under climatic conditions similar to project locality for at least two (2) years.

C. Pruning. Plants shall not be pruned prior to or after delivery unless authorized by the Owner and must be done under the supervision of a qualified arborist or horticulturist.

D. Size. All plants shall equal or exceed minimum measurements specified on the plans. Grading of plant material shall be in accordance with the codes and standards of AAN. Any undergrade plants shall be removed and replaced prior to provisional acceptance.

E. Measurement. Caliper measurements shall be taken six (6) inches above natural ground line on the trunk.

F. Tree Orientation Marking. All trees prior to digging in the field shall be marked to indicate the north side of tree trunk. Mark is to be temporary and done in manner not deleterious to the long term health and growth of the tree.

G. Nomenclature. Nomenclature shall conform with Standardized Plant Names, Second Edition. Names not present in this listing shall conform to accepted botanical nomenclature in the nursery trade.

2.02 TREES

A. Deciduous Trees: All deciduous trees, except aspen, shall have been container or nursery grown (not collected or plantation grown) from an approved nursery. Trees not showing developed root flare at top of rootball shall not be accepted. Any root bound material shall not be accepted. Boxed or containerized trees shall be handled by container only. All trees shall be first-class representatives of their species; well-shaped and full. Tree trunks shall be straight and plumb unless otherwise specified. Single-trunked trees shall be delivered with temporary mark on trunk showing north orientation of tree. The Landscape Architect reserves the right to reject any trees not meeting these criteria. Balled and burlapped material will be rejected if wrapped with plastic burlap or plastic twine. All balled and burlapped material shall have been properly root pruned.

B. Evergreen Trees. Evergreen trees shall be straight, evenly canopied, full and shapely for the species, unless specified as a character tree. Balled and burlapped material shall be tightly and neatly wrapped around the rootball. Field dug material shall have rootballs one size larger than that required for nursery grown stock of the same size. AAN standards shall be used for ball sizes. Nursery grown material shall have been root pruned prior to digging.

2.03 SHRUBS, PERENNIALS, GRASSES, AND GROUND COVERS

A. Container Stock: Plants designated as "Container" grown in various sizes and type containers in the plant list shall be of a size and stage of development normal in the nursery industry for the size container in which they are specified. They shall have been grown in their containers long enough to have developed good, round root systems capable of holding the soil intact after removal from the container, but not so long as to have become root bound. Any root-bound material will not be accepted.

B. Ground Cover: Provide well rooted, established ground cover in removable containers or integral peat pots, with not less than the minimum number and length of runners required by ANSI Z60.1 for the pot size specified.

2.04 SOIL AMENDMENTS
A. Fertilizer. Shall be Gro-Power Plant Tablets, 12-8-8 formulation or approved equal. Apply 3 per 1 gal. 7 per 5 gal. and 12 per caliper inch of tree. Submit substitutions prior to bid.

B. Soil Additives/ Plant Stimulants. Soil additives such as Ironite and Super Phosphate shall be applied if needed as a result of the soils test analysis. The plant stimulant, Superthrive, shall be applied to all plants at five (5) times the rate recommended by the manufacturer.

C. Compost applied according to manufacturer’s specifications. Utilize screened compost material. Submit chosen compost information with bid.

2.05 MISCELLANEOUS

A. Mulches as noted on the plans.
 1. Crusher Fines mulch shall be, tan in color. No substitutions accepted.
 2. Gravel mulch shall be ¾”, tumbled, tan in color.

B. Anti-Desiccant: Emulsion-type, film-forming agent designed to permit transpiration but retard excessive loss of moisture from plants. Deliver in manufacturer’s containers and mix in accordance with manufacturer’s instructions. Acceptable Product: "Wilt-Pruf."

2.06 WATER

A. Water for maintaining plants shall be clean and free from pollutants that may harm plant growth or contaminate the environment.

PART 3 - EXECUTION

3.01 PREPARATION

A. Plant Material Locations: Tree and shrub locations as shown on the planting plan are approximate only. Contractor is to stake all plant material locations as shown on the planting plan, and under the direction of the Landscape Architect adjust the position and orientation of plants as required. Final positions of all plant material are subject to the approval of the Landscape Architect.

B. Preparation Ground Surface: Areas to be planted or mulched are to be free of rock/stones greater than one inch across, trash and other debris prior to beginning planting or mulching. Subgrades for planted and mulched areas are to be approved by the Landscape Architect prior to beginning planting or mulching.

3.02 INSTALLATION

A. Planting General.
 1. Soil amendments shall be as noted in Section 329400 – Soil Amendments.
 2. Plants shall not be planted deeper than the original ground line.

B. Trees/ Individual Locations: Excavate tree pits so that top of rootball will be level with the adjacent soil grade.
 1. Tree pit excavations shall be three times as wide as the rootball in diameter and shall be no deeper than the maximum depth of the rootball.
 2. Prior to setting the tree flood the tree pit and allow all water to percolate in to soil.
3. Set rootball plumb in center of pit, set rootball such that root flare is placed slightly higher than finish soil grade. Orient tree north marking to face site north.
4. Remove burlap and wire from top half of root ball. Slice sides of remaining burlap at least three times, once tree is set firmly in planting hole and prior to backfill.
5. Unless otherwise directed on the Drawings, backfill with excavated soil in 6" tamped layers. Do not add compost to tree backfill.
6. Apply fertilizer tablets and other soil additives evenly around the perimeter of each tree root ball at a depth half way between the top and middle of the root ball.
7. Flood with water after two-thirds backfilled. After water is absorbed, continue backfilling and tamping to grade, leaving no voids or air pockets. Water again after placing final layer of backfill.
8. Form water well around each tree if noted on the Drawings for tree location and type. Fill the watering well with mulch as specified.
9. Trees shall only be staked or wrapped if directed by the Landscape Architect or specifically required in the drawings.

C. Shrub planting/ Individual Locations:

1. Shrub pit excavation shall be three times larger than width of rootball and shall only be as deep as the maximum depth of the rootball.
2. Prior to setting the plant, flood the pit and allow all water to percolate in to soil.
3. Set shrub rootball plumb in center of pit.
4. Backfill with two (2) parts native soil and one (1) part compost, unless otherwise noted in Section 329400 - Soil Preparation.
5. Apply fertilizer tablets and other soil additives when shrub pit is two-thirds backfilled.
6. Continue backfilling to finish grade, create watering well, and thoroughly water.

D. Planting Beds/ Mass Planting Areas:

1. Grade existing soil to proper depth to meet finish grades for area. Grading shall allow for compost, soil additives, and mulch depths.
2. Spread compost at depth and rates as noted in Section 329400.
3. Till compost to a minimum depth of twelve inches (12) throughout the planting bed. Till in two directions each at right angles to each other.
4. Spread soil additives and fertilizer as noted on the plans or specifications, and till 6" into compost amended soils. Till in two directions each at right angles to each other.
5. Rake and remove all rocks over 1 inch size, trash, debris or other deleterious material from the top three inches of the prepared bed.
6. Soak the amended area with water. Let the area dry. Fill any large depressions or settlement.
7. Set out plant materials designated for the planting area. If a formal arrangement is shown on the plan, align and measure plants in a uniform triangular pattern; or as shown on the Drawings; or as directed by the Landscape Architect.
8. Excavate pits large enough to set each plant. Backfill with excavated planter soil.

E. Apply anti-desiccant to leafed out deciduous trees and shrubs, and broadleaf evergreens.

F. Mulch: Spread a uniform layer of specified mulch as noted on the Drawings. Planted areas shall be approved by the Landscape Architect prior to mulch installation.

3.03 FIELD QUALITY CONTROL

A. Pruning: Pruning shall only be done under direct supervision of the Landscape Architect and in accordance with ANSI Z 133.1 and ANSI Z60.1 - 2004. Remove dead and broken branches. Prune deciduous trees and
shrubs as approved by the Landscape Architect. Retain typical growth habit of individual plants. Make cuts with sharp instruments to branch collar. Do not pole or remove the leader from the trees. Remove trimmings from site.

3.04 PROTECTION AND CLEANING

A. During the installation and maintenance periods, protect planted areas against erosion and trespass. Any damaged planting shall be replaced by the Contractor at no cost to the Owner.

B. All walks and pavements shall be swept or washed clean upon completion of work in each section. Upon completion of all planting work, clean the portion of the project site used for storing planting materials and equipment of all debris, extra materials and equipment. All such materials and equipment shall be entirely removed from the project site.

3.05 MAINTENANCE PERIOD

A. Begin maintenance of all plants immediately after planting.

B. Maintain trees, shrubs and other plants until final acceptance of all contract work.

C. Maintenance Activities: Maintenance shall include measures necessary to establish and maintain plants in vigorous and healthy growing condition:

 1. Plants shall be watered, fertilized, and maintained by the Contractor until physical completion of all the contract work.
 2. Water shall be applied to all plants by hand until the underground irrigation system is in place and operational.
 3. Cultivate and weed beds every week during maintenance period. If herbicides are used for weed control, apply in accordance with the manufacturer’s instructions. Remedy any damage resulting from use of herbicides.
 4. Pruning including removal of dead or broken branches and treatment of prune wounds.
 5. Maintain all trees in vertically plumb position
 6. Disease and insect control.
 7. Maintenance of turnbuckles and stakes.
 8. Maintain watering wells.
 9. Replace dead or dying plant material with plants of the same kind and size as specified in the plant list.

D. The Landscape Architect shall inspect maintenance work to verify that maintenance work has been satisfactorily undertaken and continued. The Contractor shall make all corrective measures, as directed by the Landscape Architect, prior to release of maintenance responsibilities. All maintenance work as outlined herein is incidental to each planting item, and no additional payment will be made for maintenance operations.

E. Maintenance Manual Submittal: Prior to Final Inspection, the Contractor shall submit a plant maintenance manual that is acceptable to the Landscape Architect.

END OF SECTION 329400