City of Santa Fe

	CITY CI	ERK'S OFFI	CE	•
Agendo	DATE	5/3/14	TIMF, ,	2:232
, .gen.ga	Servei	UBY Chu	retine	Chaver.
	RECEIV	کب ED BY	380	2
			22	$\overline{\mathbf{Q}}$

SANTA FE WATER CONSERVATION COMMITTEE MEETING CITY HALL - 200 LINCOLN AVE. CITY COUNCILORS' CONFERENCE ROOM May 10, 2016

4:00 PM TO 6:00 PM

- 1. CALL TO ORDER
- 2. ROLL CALL
- 3. APPROVAL OF AGENDA
- 4. APPROVAL OF MINUTES TUESDAY APRIL 12, 2016 WATER CONSERVATION COMMITTEE MEETING

ACTION ITEMS:

No Action Items

DISCUSSION ITEMS:

- 5. PARKS STUDY (Christine Chavez, Robert Wood, 15 minutes)
- 6. CONVERSION OF CONSERVATION LITERATURE TO SPANISH (Christine Chavez, 15 minutes)
- 7. DISCUSSION OF WATER CONSERVATION PROGRAM (Christine Chavez, 20 minutes)

INFORMATIONAL ITEMS:

- 8. 2015 ANNUAL WATER REPORT (Christine Chavez, 10 minutes)
- 9. GROUP REPORTS FROM WATER CONSERVATION COMMITTEE INITATIVES: (Councilor Ives, 35 minutes)
 - A. GROUP #5- WATER SYSTEM MAP
 - B. GROUP #1- TREATED WASTE WATER AS DRINKING WATER SOURCE. (5 Minutes)
 - C. GROUP #2- WATER CONSERVATION EDUCATION/OUTREACH (5 minutes)
 - D. GROUP #3- WATER CONSERVATION CODES, ORDINANCES & REGULATIONS LEGISLATIVE UPDATE (5 minutes)
- 10. DEMONSTRATION OF NEW DRINKING WATER MODEL (Christine Chavez, 15 minutes)
- 11. SOURCE OF SUPPLY DROUGHT UPDATE

MATTERS FROM STAFF:

• Update on Water Conservation Program activities (10 minutes)

MATTERS FROM PUBLIC:

MATTERS FROM COMMITTEE:

NEXT MEETING - TUESDAY June 14th , 2016:

CAPTIONS: JUNE 1, 2016 @ 3 PM. PACKET MATERIAL: JUNE 3, 2016 @ 3 PM.

ITEMS FOR NEXT AGENDA: Update on water reuse project – Bill Schneider (June Meeting)

ADJOURN.

Persons with disabilities in need of accommodations, contact the City Clerk's office at 955-6520, five (5) working days prior to meeting date.

WATER CONSERVATION COMMITTEE INDEX APRIL 12, 2016

Cover Page		Page 0
Roll Call/Call to Order	Lisa Randall, Acting Chair, called the Water Conservation Committee Meeting to order at 4:05 pm in the City Councilor's Conference Room. A quorum is reflected in roll call.	Page 1
Approval of Agenda	<i>Mr.</i> Pushard moved to approve the agenda as presented, second by <i>Mr.</i> Roth, motion carried by unanimous voice vote.	Page 1
Approval of Minutes, February 9, 2016 and March 8, 2016	 Mr. Pushard moved to approve the minutes of February 9, 2016 as presented, second by Mr. Mr. Michael, motion carried by unanimous voice vote. Mr. Roth moved to approve the minutes of March 8, 2016 as presented, second by Mr. Wyman, motion carried by unanimous voice vote. 	Page 1-2
Action Items - A Resolution amending Resolution No. 2008-40 regarding membership of the Santa Fe Water Conservation Committee to include term limits for committee members.	Mr. Pushard moved to approve the recommendation of Resolution amending Resolution No. 2008-40 regarding membership of the Santa Fe Water Conservation Committee to include term limits for committee members, second by Mr. Wyman, motion carried by unanimous voice vote.	Page 2
Discussion Items: - Draft GPCD Analysis - Water System Map - Implementation of Strategic Marketing Plan - Discussion of Water Conservation Program	Informational: No formal action. All discussion pieces included in the meeting packet. Note: GPCD Analysis is no longer in draft status.	Page 2-5
Change of Chairmanship – Ms. Randall departed at 5:00 pm	Mr. Roth moved to assign Mr. Pushard as Acting Chair in her departure at 5:00 pm, second by Mr. Wyman, motion carried by unanimous voice vote.	Ĩ
Informational Items: Group #1, 2, 3 & 5	Informational	Page 5-7
Source of Supply – Drought Update	Informational – report in meeting packet.	Page 7
Matters from Staff Update on Water Conservation Program Activities	Informational	Page 7
Matters from Committee	Informational	Page 7
Matters from the Public	Informational	Page 7
Next Meeting	Tuesday, May 10, 2016	Page 7
Adjournment and signature	Meeting was adjourned at 6:10 pm	Page 8

CITY OF SANTA FE

WATER CONSERVATION COMMITTEE

MINUTES

Fran Lucero, Stenographer 4/12/2016

DRAFT UNTIL APPROVED

SANTA FE WATER CONSERVATION COMMITTEE MEETING CITY HALL - 200 LINCOLN AVE. CITY COUNCILORS' CONFERENCE ROOM APRIL 12, 2016 4:00 PM TO 6:10 PM

MINUTES

1. CALL TO ORDER

Lisa Randall, Acting Chair for the Water Conservation Committee called the meeting to order at 4:05 pm in the City Councilors' Conference Room. A quorum is reflected in roll call.

2. ROLL CALL

Present: Lisa Randall, Vice Chair – Acting Chair Doug Pushard Tim Michael Stephen Wiman Bill Roth Giselle Piburn

Not Present: Councilor Peter Ives, Chair, Excused

Staff Present: Christine Chavez, Water Conservation Department Manager Jesse Guillen, Legislative Liaison, City of Santa Fe Robert Wood, Water Conservation Specialist Senior

Others Present: Andy Otto, Santa Fe Watershed Association Aaron Kaufman, Prospective Member, Audience Fran Lucero, Stenographer

3. APPROVAL OF AGENDA

Mr. Pushard moved to approve the agenda as presented, second by Mr. Roth, motion carried by unanimous voice vote.

4. APPROVAL OF MINUTES – FEBRUARY 9, 2016 AND MARCH 8, 2016 No changes from staff.

Mr. Pushard moved to approve the minutes of February 9, 2016 as presented, second by Mr. Mr. Michael, motion carried by unanimous voice vote.

Mr. Roth moved to approve the minutes of March 8, 2016 as presented, second by Mr. Wyman, motion carried by unanimous voice vote.

ACTION ITEMS:

5. A RESOLUTION AMENDING RESOLUTION NO. 2008-40 REGARDING MEMBERSHIP OF THE SANTA FE WATER CONSERVATION COMMITTEE TO INCLUDE TERM LIMITS FOR COMMITTEEMEMBERS

The Resolution was sent to PUC and was approved at that level. It will now go through Finance Committee and City Council. Resolution wording changes recommended by the Water conservation Committee have been incorporated. One of the Whereas specifies: "on March 8, 2016 the Water Conservation Committee approved recommendation to the Governing Body that term limits be imposed for members of the Water Conservation Committee". The Committee shall be appointed by the Mayor and consist of ten members not including the Chair. The recommendation is to have two -2-year terms. Terms are spelled out in the resolution for the five members who have served the longest uninterrupted term.

Mr. Pushard moved to approve the recommendation of Resolution amending Resolution No. 2008-40 regarding membership of the Santa Fe Water Conservation Committee to include term limits for committee members, second by Mr. Wyman, motion carried by unanimous voice vote.

DISCUSSION ITEMS

6. DRAFT GPCD ANALYSIS

Ms. Chavez sent the analysis to each member by e-mail for review prior to this meeting. Ms. Chavez also asked if there were any questions or comments on this topic and reiterated that she invites discussion prior to the meeting on any subject.

Mr. Hook included the GPCD Analysis in final form. The 2015 GPCD Calculator reflects the City of Santa Fe Water Division customer's was 90 gallons per capita per day. The previous year, the NMOSE methodology calculation for the City of Santa Fe was 95 GPCD. In comparison to other cities in the southwest, the City's GPCD is one of the lowest.

Mr. Wyman: There is a comment that the city has achieved lower water consumption through public outreach, ordinances requiring customers to comply with water conservation conditions and the utilization of incentives. Mr. Wyman asked if there is a way to increase this number. Ms. Chavez said that when Mr. Hook presented to PUC they did not look at precipitation. Ms. Chavez said she feels that at some point they need to show how consumption affects precipitation and publish possibly through the website. Mr. Wyman said it sets the stage for an increase the way precipitation looks right now. Ms. Chavez said that what is good about this methodology is it provides a good comparison with other utilities. Ms. Chavez said that future discussion could be scheduled to talk about the GPCD and the flaws. She stated that when they start to break up the family classes it is a little misleading. There are assumptions as far as the water use in the classes.

Mr. Pushard would like to spend time on the spreadsheet and possibly make recommendations back to OSE as a committee. Updates were made last year to OSE and he feels they would be receptive to suggestions from the Water Conservation Committee.

Mr. Michael asked if they want to make recommendations to OSE or stay with input strictly to the City of Santa Fe. Ms. Chavez feels that both are important and it would be good if there was a place to insert precipitation.

Mr. Pushard said that in the past the Water Conservation Department was listing two numbers and it was very confusing; we as a committee should review and understand what is listed before listing the two numbers. Mr. Pushard also supports more accurate information.

Ms. Chavez said that if at all possible a special meeting can be scheduled for GPCD.

Ms. Chavez showed the committee on the overhead the NMOSE GPCD Calculator reflecting the numbers and directed her comments to the monthly analysis of GPCD. Single family reflects numbers you would expect to see, when you go to multi-family, you would expect pretty consistent consumption. If you would see a peak it would be in the summer months and this graph reflects the peak in December. This is reflecting incorrect estimates when the meters were going in November. High usage in December is a make-up of usage rates.

Mr. Wood said that in some cases the meters could not all be read. In other instances the fire fly had failed, the estimates were from the old meters. New meters will be more accurate and provide warnings on usage.

Ms. Chavez noted that you can never have non-revenue water and December reflects negative non-revenue water. The first quarter will need to be reviewed to assure that the readings are accurate. The new meters will accurately measure and reflect the use of water. Ms. Chavez said that in the second phase they will be working on the customer portal.

Ms. Chavez informed the committee that Mr. Schiavo will attend the August meeting and demonstrate the customer portal. Ms. Chavez is happy to answer any questions off line. There is a lot of work to be done to get this matter corrected.

7. WATER SYSTEM MAP

Plan is to have the map be consistent. (Map shown on overhead and is published on the website. Ms. Chavez welcomes comments from the Water Conservation Committee members.) It is located under water supply sources. Mr. Wyman would like to see something on San Juan Chama on the map; it won't be possible on this scale on the capacity of the reservoirs. We need to compromise and be practical on what we can show. Ms. Chavez and Mr. Wyman will continue to work on the map and feels that it will be completed in phases, we consider this Phase I.

8. IMPLEMENTATION OF STRATEGIC MARKETING PLAN (Included in packet). As a follow up to the request from the committee, Ms. Chavez was asked to bring this topic back. Ms. Chavez noted that Lynn's contract has been approved and she will provide us with the added manpower to move this plan forward.

Mr. Pushard said that the Goal was to reduce GPCD by 9%. Mr. Pushard also provided some comparative statistics on other states and countries. Our old goal used to be to reduce and now we use the word maintain.

Ms. Chavez noted that this document has now gone through committee and it has been approved. It now belongs to the WCC and we should now be able to change and reflect the accurate verbiage. Ms. Chavez asked that Mr. Pushard send his suggested changes to her by e-mail. This document is now owned by the Water Conservation Committee. If there are any inconsistencies, document and send to Ms. Chavez. Ms. Chavez said they are using this document as it reads and if there are edits it would be good to have a clean document before Lynn comes in. A corrected document will be brought back to the next meeting.

Mr. Wyman would like to see some demonstration homes that pertain to this application in a home. There is also a comment on 50% loss due to inefficiencies. What can we do about that?

Mr. Michael said he would also like to reach a point where the number is more realistic. Mr. Wood said now that they have conserve-a-track they should be able to get data quicker and more efficient. Ms. Chavez said they could also use the GPCD numbers from Santa Fe. Ms. Chavez also noted that this document is an internal document and the committee can work to have it reflect the best working data.

Mr. Roth moved to assign Mr. Pushard as Acting Chair in her departure at 5:00 pm, second by Mr. Wyman, motion carried by unanimous voice vote.

Mr. Pushard said that on the "how," "is there information on the rain harvesting and can you change the rebate in a quicker fashion and could it be done this summer." Ms. Chavez said that on this topic there is a draft that will come to the WCC for review. Once Ms. Katherine Mortimer has her documents and they are approved we can implement. New rebates with restricted use will be rolled out on May 1st.

Mr. Pushard: On the "how to" have you thought about how you will change the marketing collateral to Spanish? Ms. Chavez said that there are some documents translated. She said that the QWELL documents are one priority and possibly working with the Santa Fe Community College to get this done and research funding. Ms. Chavez asked if the WCC members have specific documents or priorities for them to be translated. Brochures are also a priority and the State of New Mexico would need to take responsibility for this. Ms. Chavez said that a translator with water verbiage knowledge would be needed and recommendations are welcomed.

Mr. Otto said that at the Watershed they had a proposal for translation and possibly could assist with this request. The individual he would recommend has a PhD in Water Science. Mr. Otto and Ms. Chavez will continue communications on this item.

9. DISCUSSION OF WATER CONSERVATION PROGRAM

Ms. Chavez noted two comments on items that she would like help from the WCC members. Thank you for the help that the members have given her away from meetings. We are pushing out the rebate program in May. Ms. Chavez asked the committee members on next steps for the WERS and whole house rebate. How would we handle that for existing construction and remodeling? The question is if staff could get certified and if they would do the actual WERS test in the households. With regards to Irrigation Rebate, it is still being reviewed. It is hard to change a Resolution and it would be helpful to tweak with what has already been stated. There are few cities that are working with a company called Sky Drop who bring in a team; they do an audit and program and install their AP, provide technical assistance and maintain for the life of the smart meter. The cost per unit is \$350 but the city rebate is \$375. The data that they gather is positive; they are based out of California but have done projects in Roswell and a few other cities in NM. They provided information to the Water Conservation Manager that will be shared with the Water Conservation Committee. Also, on the audit component, they could go in and do it as QWELL certified, the customer wouldn't pay anything.

Ms. Chavez is trying to develop a more extensive and comprehensive educational program. The goal is to provide this to the teachers by the spring. Ms. Chavez asked for help to identify partners who have the same goal and ideas on how to incentivize the teachers. Mr. Roth suggested the School of Sustainability where students could mentor other kids. Children get excited and they develop a passion that is infectious with the parents. Ms. Chavez will reach out to Ms. Randall for her support and ideas.

Mr. Michael asked who is "we" when you talk about the whole house rebate. Ms. Chavez said that the "we" is staff. We would need to know how many applications we are getting in, who would do the audit and the cost. Mr. Pushard will contact Ms. Chavez to discuss this individually and bring back additional information to the WCC members.

Ms. Piburn welcomes a document on this educational opportunity that she can share with educators. The WCC members would all like to receive a document of this sort for distribution.

INFORMATIONAL ITEMS

8. Group Reports from Water Conservation Committee Initiatives

- a. Group #5 Water System Map Reported above.
- b. Group #1 Treated Waste Water as Drinking Water Source
 Stephen Wyman: Memo was distributed to the members from Mr. Schneider
 where they are asking for more money. The question is it because they fell short

on budget? Ms. Chavez said that she will need to get direct information from Mr. Schneider and she will share with the WCC members when the information is available. Mr. Wyman will work on this topic and report at next month meeting.

- c. Group #2 Water Conservation Education/Outreach Tim Michael Mr. Michael was invited and participated in an interview with Que Suave Radio with the City Councilor where they provided good information to the public on Water Conservation. Ms. Chavez said that they will prepare an agenda to assure that the items they would like to cover are addressed during the radio show. She welcomes information from the WCC members and would like to provide more information to the public during that radio show. Also, if any WCC members would like to be on the show she accepts the offer.
- d. Group #3 Water Conservation Codes, Ordinances and Regulations Legislative Doug Pushard – Report included in packet (Exhibit A). Items that were approved and signed by the Governor and received funding are included in report. EPA user study was released yesterday and likely to be published in the spring of 2016. It will also include outdoor watering. Ms. Chavez will request a copy of that study. Mr. Pushard did attend a conference in San Francisco, CA to promote WERS. The contacts made were very positive and literature was shared with the WCC members and to be retained in the Water Conservation office. There is a list of the presentations and links will be shared with staff once they are received for informational purposes. A very different approach from what we are doing in a positive direction. Mr. Pushard made a presentation to an alternative water group; information from this meeting will be sent to Ms. Chavez. Another contact on the alternative water group – there is a College Water Efficiency Group – information will be shared also with Ms. Randall and Ms. Chavez. They are doing water savings on campuses and sharing data with different schools on how the program is doing. This would be worthy of researching to see what is working and not working. Mr. Pushard will again provide a link for contact to this group. Atlanta has created a demonstration site on reused water (total water) which we could look at as a role model and it would be nice to do something like that. This is a big tourist attraction and it could help secure funding.

Mr. Pushard did meet with the QWELL representative who was an attendee at this conference. They are working at incorporating drip in to the training and it won't lengthen the training term.

Mr. Pushard noted that they do a grey water class; they have agreed that training would need to be done in California. It would be good for staff to attend if at all possible.

WERS Training was done and it was a full class. The city can become certified to do their own WERS inspections. Next class is scheduled for June 14-15-16, 2016 at the Santa Fe Community College. First inspection will be done with a

customer tomorrow showing them their numbers and what they should be and how they can change it.

9. Source of Supply Drought Update, Included in Packet – No questions, informational report.

MATTERS FROM STAFF

Update On Water Conservation Program Activities

- Ms. Chavez Earth Day Booth April 22, 2016 at the Genoveva Chavez Center. They will be signing people up for the Mayor's Water Challenge – Ms. Chavez will send the pledge to the WCC members. We want to rank the City of Santa Fe as high as possible.
- There is a great deal of school presentations this month in Santa Fe that staff will attend. Ms. Chavez and Mr. Wood will attend the water festival in Los Alamos.
- The Water Conservation Department is bringing a Water Enforcement Officer on staff.
- Mr. Aaron Kaufman's paper work has been submitted to the Mayor as a future member, looking forward to him being on board very soon.
- Proposed Ad for Water Conservation openings was shared with the committee members for review. This Ad will be published in the Newspaper and will be sent to the WCC members to distribute to any contacts they have. There are three positions available. The five different areas of expertise are defined in the resolution; the goal is to attract individuals with commitment, diversity and willing to be a part of the process. It was reiterated that the full membership consists of 10 members not including the Chair.

MATTERS FROM THE PUBLIC

Mr. Otto will send a list of programs to Ms. Chavez for information and collaboration.

MATTERS FROM COMMITTEE

Monte del Sol Charter School Presentation – April 26, 27, 28 from 9 am – 4 pm, WCC members invited.

NEXT MEETING - TUESDAY, MAY 10, 2016

ITEMS FOR NEXT AGENDA

Update on Water Re-use Project. Bill Schneider (June Meeting) Nick Schiavo to attend August Meeting, Customer Portal Discussion QWELL documents to be translated in to Spanish: Ms. Chavez will bring documents to prioritize at next meeting.

ADJOURN

There being no further business to come before the Water Conservation Committee, the meeting was adjourned at 6:10 PM

Signature Page:

Lisa Randall, Acting Chair

Fran Lucero, Stenographer

Doug Pushard, Acting Chair

City of Santa Fe, New Mexico DATE: May 4th, 2016 To: Nicholas Schiavo, Public Utilities & Water Division Director VIA: Rick Carpenter, Acting Water Division Director, Water Resources & Conservation Manager FROM: Robert Wood, Water Conservation Specialist SR KE: Parks water use evaluation.

SUMMARY:

Water Conservation conducted a use study to determine the results of recent irrigation upgrades within local parks.

Projects were selected using the parks from a recent 2008 Bond Parks Irrigation Audit study.

RESULTS:

In general, the results show a decline in overall water usage as indicated by the trend line from 2002 to 2015.

Factors affecting the trend line:

- 1. Several parks were added or space was upsized during the time frame indicated, notes are referenced within the worksheets.
- 2. Several parks had major leaks that affected usage during specific years.
- 3. Several parks had meter failures or system failures that affected usage during specific years.
- 4. Construction activity affected usage within several parks.
- 5. Yearly precipitation is not factored into results.

Parks Division Water Use Study

Actual Use – Black line

Trend line – Blue Line

				Service												
	Account # N	/leter#	Size	Address												
Adam Gabriel Armijo	366926	9919926	2"	32254												
1404 CERRO GORDO RD IRR																
	۲.	AN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEP	т ос	T NC	DV DE	C	TOTAL YEAR GA	ALLON
200	2	100	2000	0	0	0	300	400) 91	00	0	6	0	0	3706	
200	3	0	0	0	300	300	400	600) 43	00	0	0	0	0	5900	
200	14	0	0	500	14300	0	100	()	0	100	0	0	0	15000	
200	15	0	0	0	800	300	600	390)	0	0	0	0	0	5600	
200	16	0	0	0	0	0	0	()	0	0	0	0	0	0	
200	17	0	0	800	27900	0	0	()	0	0	0	100	0	28800	
200	8	0	0	100	0	0	0	()	0	0	0	0	0	100	
200	9	0	0	0	0	0	0	()	0	200	0	0	0	200	
201	.0	0	0	0	0	0	0	()	0	0	0	0	0	0	
201	1	0	0	0	0	0	0	()	0	0	0	0	0	0	
201	.2	0	0	0	1300	100	0	()	0	0	0	12500	0	13900	
201	.3	0	0	0	0	4600	2500	310) 25	00	2400	3100	1200	0	19400	
201	.4	0	0	0	0	3100	18200	1950) 17	00	19400	20900	3000	0	85800	

Additional plantings added 2012/2013 - Trees.

	Account #	Meter #	Size	Service Address											
Cathedral	359662	9945793	1 1/2"	31970											
YEAR		JAN F	EB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ост	NOV	DEC	-	TOTAL YEAR GALLONS
	2002	0	C	0	0	0	0	0	0	0	0	2100		0	2100
	2003	0	C	0	18600	68700	57800	84500	93500	26600	47400	40800		0	437900
	2004	0	C	0	15400	82900	70500	87900	278	101300	7000	2100		0	367378
	2005	0	C	0	10400	24800	127000	111600	80600	46800	23700	4200		0	429100
	2006	0	C	1400	100000	164000	137600	52700	38300	44000	27400	6700		0	572100
	2007	0	C	0	11200	43800	29300	97200	43300	85100	41700	16600		0	368200
	2008	0	C	0	11200	61500	102700	85800	57600	38300	50400	7600		0	415100
	2009	0	C	700	20500	82100	49000	165900	65800	78200	47100	6100		0	515400
	2010	0	C	0	6100	41800	149800	80300	77200	134300	74900	18900		0	583300
	2011	0	C	7400	19600	74700	113500	140200	145000	50800	34200	11900		0	597300
	2012	0	C	0	26700	46900	91800	95600	104700	73900	88300	32700		0	560600
	2013	0	C	0	3400	62600	85800	83200	43500	73800	26800	15300		0	394400
	2014	0	C	0	6300	58700	82200	82300	52900	67300	28600	11000		0	389300
	2015	0	C	0	0	31500	45500	67900	60200	67300	68600	5100		0	346100

Frank S. Ortiz Dog Park	Accour 5488	nt# Meter# 343 9956515	Size 1"	Service Addres 4643	e s 81												
YEAR	2002 2003	JAN	FEB	MAR	APR	M/	ΑY .	IUNE	JULY	AUG	G S	SEPT	OCT	NOV	DEC	тс	OTALYEAR GALLONS
	2004 2005																0 rwwood\2015 0 irrigation audits\
	2006																0
	2007																0
	2008																0
	2009																0
	2010	0		0	0	0	0	(כ	0	0	0	0	60900)	0	60900
	2011	0		0	0	3400	8000	420	D 5	000	5100	1100	2400	400)	0	29600
	2012	0		0	0	1300	4900	1080	0 10	600	9700	9200	7400	4800)		58700
	2013	0		0	0	0	9300	1220	0 10	900	6000	11100	2100	1000)	0	52600
	2014	0		0	0	0	900	1080	0 12	900	7900	12900	7600	2400)	0	55400
	2015	0		0	0	0	4700	580	D 8	100	3000	6100	1600	()	0	29300

Additional small irrigated area added 2009

-

Site Sur Sur	e Name: e Addre: rveyor: rvey Dat	Frank Ortiz Par ss: Sam e:	Catch	Time: S	ate:	Finish		Conta Phon Conta Phon
Sui	rvey Dat	œ	Catch	1 Cup D	ate:			Phon
			Lands	scape (s	q. ft):			Turf (sq. ft):
S	eter #'s	Begin Read	End F	lead	Backflo	w PSI		Comments:
99	56515	00259884	0026	0424	static	dynamic		Orginal inst
					65	42		Many cappu Irritrol adju Irritrol are i
Catch Cup Count	Zone	Head or Sprin Type and Location if needed	kler	# Head	Test Time (min)	Head PS on Zone	_	T=Slanted, C=Cloege: BN=Broken Nozzle, C RD=Radius Screw Dov LPSI=Low Pressure at Missing Head, BV= Br NSI=No Start Time, N area, RX=Remove tur Shrubs per Zone), Ad
	1			54	20		-	Target: 5
								Actual: 32
	2			15	20			Target: 1
								Actual: 1:
	3							
	4		-					
	л		_					

	Account #	Meter #	Size	Se Ac	ervice Idress											
John Griego (Veterans)	407767	9940826	2"		31711											
1605 PASEO DE LA CONQUISTAL	ORA PARK	(
YEAR		JAN	FEB	MA	AR A	APR	MAY	JUNE	JULY	AUG S	SEPT	OCT	NOV	DEC		
2002		0		0	0	0	0	C	0	0	0	0	137200	0	13	37200
2003		0		0	0	0	64100	116800	119800	108800	0	44600	25700	0	47	/9800
2004		0		0	0	20400	39500	103600	134900	75600	139700	68800	21200	0	60)3700
2005		0		0	0	32000	76300	179200	340800	356900	357500	120900	0	0	146	53600
2006		0		0	4800	285800	235400	361000	332600	363000	338500	96900	13000	0	203	31000
2007		0		0	0	33900	118200	80700	239700	217100	257500	363700	15900	0	132	26700
2008		0		0	0	17000	120300	145600	209100	121700	118800	148800	40300	0	92	21600
2009		0		0	100	64400	86700	114800	169100	209500	160000	0	8500	0	81	13100
2010		0		0	0	21200	79100	139600	226600	84600	125500	92800	26500	0	79)5900
2011		0		0	0	51400	126100	113500	188500	172500	79300	53900	12700	0	79)7900
2012		0		0	0	46400	121500	165800	198600	203900	170600	90700	23800	0	102	21300
2013		0		0	0	9200	76400	132800	120500	109700	117800	11900	9300	0	58	37600
2014		0		0	0	18000	129800	125700	206600	91300	127000	74500	24400	0	79	97300
2015		0		0	0	4900	59800	62800	122700	76200	137000	125200	0	0	58	38600

Irrigation upgrade in 2012

Mager's Field	Accour 3604	nt # 101	Meter 995571	∦ 51/2	Size 4"&4		S A	ervice Idress 31952																				
YEAR		JAN A	JAN B	FEB A	FEB B	MAR		AR B	APR A	APR B	MAYA	MAY B	JUNE A	UNEB	JULY A	JULY B	AUG A	AUG B	SEPT A	SEPT B	OCT A	OCT B	NOV A	NOV B	DEC A	DEC B		TOTAL YEAR GALLONS
	2002		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0) 0	()	0	0	0
	2003		0	0	0	0	0	0	0	D	3000	0	1000	0	0	0	1000	0	6	0 0	164000	0	74000	c)	0	0	243000
	2004		0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0 0	0	0	0 0	ſ)	0	0	0
	2005		0	0	D	0	0	0	0	0	0	0	0	0	2000	0	C	0	0	0 0	0	0	0	c)	0	0	2000
	2006		0	0	0	0	0	0	25000	0	0	0	0	0	0	0	C	0	0) 0	0	1	0 0	c)	0	0	25000
	2007		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0) 0	c)	0	0	0
	2008	10	00 4	00	0	0	14000	97300	29300	275200	51900	476900	80900	0	50300	1224300	0	0	44900	370200	46200	279500	7300	C	650	0	63700	3118900
	2009		0 2	00	0	0	10800	4600	15300	122400	36500	327500	50500	459400	50800	467100	87000	764000	40500	338500	25600	234400	0 0	C)	0	0	3035100
	2010		0	0	0	0	0	0	1500	27100	27100	237200	45600	418900	70000	599600	49300	414800	89000	832000	39200	339300	10200	100700)	0	0	3301500
	2011		0	0	0	0	0	0	26300	257700	22700	215300	46300	417000	47700	445300	55500	504700	25600	236000	18100	160800	5100	19700)	0	0	2503800
	2012		0	0	0	0	0	0	13700	145400	32900	324500	52300	497800	97800	932600	43700	406100	37800	352200	38300	393100	24100	195400)	0	0	3587700
	2013		0	0	0	D	0	0	0	800	60600	564100	63500	605800	52800	473100	32100	305200	47500	457300	15900	76300	9800	54100)	0	0	2818900
	2014		0	0	0	0	0	0	4700	49100	37700	356800	35000	337800	69900	374600	19000	182300	28700	290300	22200	212900	2500	25600)	0	0	2049100
	2015		0	0	٥	0	0	0	1100	34500	29500	387300	22900	205400	30100	659300	28600	10300	34700	401900	32000	308400	4200	a)	0		2190200
												YEA	R GALL	ONS											P			

				Service
	Account #	Meter #	Size	Address
Plaza Park	382088	9961271/	2"&1"	27875

YEAR

	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	TOTAL YEAR GALLONS
2002	0	0	133700	31800	45700	43300	100	900	12300	18700	100	400	287000
2003	0	0	0	3000	41100	52300	115500	101900	58400	63300	6900	0	442400
2004	0	0	0	4100	116600	163700	137000	79600	80300	56900	26000	0	664200
2005	0	0	400	31700	116500	163500	175900	101500	104600	60600	0	0	754700
2006	18300	0	13600	63800	128000	133000	99400	61600	54400	90000	26300	0	688400
2007	0	0	0	23700	70500	96900	112300	66600	113000	70200	3500	0	556700
2008	0	0	0	12500	160800	162500	102000	80100	76500	68700	0	0	663100
2009	0	0	0	25500	127800	63300	88400	125400	93300	72900	800	0	597400
2010	0	0	0	23900	112300	107200	118300	78100	82600	99600	24300	0	646300
2011	0	0	0	67000	164500	68500	133100	136700	72700	94900	9000	0	746400
2012	0	0	0	47300	79300	91400	137900	129200	111300	151100	72100	0	819600
2013	0	0	0	0	0	0	0	0	0	0	0	0	0
2014	0	0	0	57800	78000	74900	130500	80800	139400	119300	23700	0	704400
2015	0	0	0	63100	69700	57000	89000	84800	84500	91400	17800	0	557300

Failed Meter

meter failure in 2013

Sunnyslope	Account # Met 560095-995	er# Size	Addres	e s oo										
Sumprope	300033 333	575 576	-0-7											-
YEAR	JAN FEB	MAR	APR	MAY	JUNE	JUL	Y AUG	G SEPT	r oo	CT N	OV DEC	тот	AL YEAR GALLONS	
2002	0	0	0	0	0	0	0	0	0	0	2100	0	2100	\\file_sur_1\bornot\
2003	0	0	0	0	0	0	0	0	0	0	0	0	0	rwwood\2015
2004	0	0	0	0	0	0	0	0	0	0	0	0	0	irrigation audits)
2005	0	0	0	0	0	0	0	0	0	0	0	0	0	
2006	0	0	0	0	0	0	0	0	0	0	0	0	0	
2007	0	0	0	0	0	0	0	0	0	0	0	0	0	
2008	0	0	0	0	0	0	0	0	0	0	0	0	0	
2009	0	0	0	0	0	0	0	0	0	0	0	0	0	
2010	0	0	0	0	0 11	400	0	0	0	38000	0	0	49400	
2011	0	0	0 54	00	0	0	0	0	0	0	69600	0	75000	
2012	0	0	0 288	00 3180	00 20)600	11400	11600	9000	5100	1400	0	119700	
2013	0	0	0 64	00 300	90 9	J100	10000	5300	7300	1800	200	0	43100	
2014	0	0	0 5	00 220	00 12	2500	19900	19300	9600	2700	1500	0	68200	
2015	0	0	0 2	00 150	00 5	500	9000	7700	13300	4100	100	0	41400	
	140000					Y	'ear Ga	llons						
	120000 100000										\wedge			
	60000								1		/			
	20000	2003	2004	2005	2005	2007	20.08	2009	2010	2011	2012	2012	2014 2015	

Community Gardens added 2009

					Catc	h Cı	ир	Cou	nt								Me			06/	Sur	Site	Site	N N
u I		2		1					Zone								eter #'s			Vey Date /23/2015	veyor: S	e Addres	e Name:	
		Irritrol		Irritrol				and Loc	Head o					49	3681	Read	Begin				am		Sunny Sic	Bu unga
		& RB .50 GPM		& RB .50 GPM				ation if needed	r Sprinkler Type						368529		End Read		Landscape (sq.	Catch Cup Date	-		pe	uon system Aud
		18		24			\$	‡ Q	Неа		5								ft):		Time			
		20		20	Ę	- (m	- α	, Tim	Test			125		n	stati	PSI	Backf				: Start			
					е <u>со</u> п	on	5	b d	Неа			20	C	ami	dyn		low				Finis			
	Actual	Target	Actual	Target		Xeriscape o Notes as ne	MP Rotator	Screw Down Pressure at	T=Slanted, (BN=Broken	some	Systen	specifi	adjust	Bubble	Origin		Comm	ft):	Turf		1 1 1	PŦ	0	
	380 GPM	: 180 GPM 6 Trees	352 GPM	: 240 GPM 7 Trees		Shrub Bed, (Count number of Trees, Shrubs per Zone), Addition: 2ded	s, incomposition of the set of th	Too Far, RF=Runoff, OV= Overspray, LH= Low Head, LPSI=Low lead, UP=Stuck Up, RTF= Rotation Too Fast, MH= Missing Head, B a Mr= Nozzle Color CNE= Can Not Find NST=No Start Time MDR:	=Clogged, Bl=Blocked Spray, BS=Broken Stern, BH=Broken Head, Vozzle, CO=Cap Off, WS=Wrong Spacing, WA=Wrong Arc, RD=Rad	are non-functional.	needs new solenoids as currently	cations with RB .50 GPM Bubblers.	able bubblers. Replace back to	rs. System is primarily Irritrol	al install specified RB .50 GPM		ents:		Shrubs (sq. ft):	one #:	ntacts:	one #:	intacts:	

				Service										
	Account # Me	ter#	Size	Address								Syster	n DU report =	
Torreon	357000 996	1712	2"	31540									31%	
1515 ALAMEDA ST -TORREON PARK														
YEAR	JAN FEB	М	AR A	APR I	MAY J	JUNE .	IULY	AUG	SEPT	OCT	NOV DEC	ς τοται	YEAR GALLONS	
2002	0	0	0	14900	54000	53300	1000	2900	0	26700	0	0	152800	
2003	0	0	0	0	65600	257700	297800	218300	180900	300	119900	0	1140500	Document
2004	0	0	0	0	119500	77600	248300	249700	252800	136900	97100	0	1181900	
2005	0	0	0	47700	222700	288300	218100	195800	232900	67100	0	0	1272600	1
2006	0	0	300	272400	319900	308100	256500	187000	107900	163400	2900	0	1618400	
2007	0	0	0	41000	143900	141900	306000	272200	299400	312000	13600	0	1530000	
2008	0	0	0	30500	90600	192600	319400	513000	414500	339600	56100	0	1956300	
2009	0	0	0	74000	91500	156100	210900	270900	178100	141700	36200	0	1159400	
2010	0	0	0	32000	106000	205200	192500	191100	196500	209300	50300	0	1182900	
2011	0	0	0	98600	178000	169100	258500	217300	210600	151500	61000	0	1344600	
2012	0	0	0	47000	131200	181200	269000	196300	183000	248900	59500	0	1316100	
2013	0	0	0	2800	175000	252800	212400	206500	193700	70100	53000	0	1166300	
2014	0	0	0	59300	252900	227300	227800	124600	189700	106800	34700	0	1223100	
2015	0	0	0	0	75600	115100	216600	143500	229800	221700	1200	0	1003500	
	-	_											1	

	םט _{ומ} =	Calculate Distribution Uniformity		Average Volume (V _{avg})	Volume	Total Catch	Devices	Number Catch	16	15	14	13	12	11	10	9	8	7	σ	л	4	ω	2	1	Volumes	Catch Device	Test Area/Station	City, State	Address	Project Name
Average Volume (V _{avg})									20	25	20	15	17	14	25	14	10	40	25	25	13	15	14	4						
	-								32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17					-	Torr
				16.8		606	L C	2	0	4	4	15	0	7	43	17	22	15	16	26	26	25	15	20						eon
				ω	Low Quarter	Total	L/T Number Catch Devices	1/4	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33			1			
	-		(V _{Iq})	Average Low Ouarter																	J	15	15	20				Area/Zone/	Auditor	Date
									64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49				Station		
	Average Low Quarter (V _{la})					47		o.																				1.00	Sam	June 25
	u			5.22				T	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65						2015
	0.31																							min						
						ĺ		96 97	94	93	92	91	90	68	88	87	86	85	84	83	82	81								
	0.31							96 C6	94	93	92	91	90	68	88	87	86	85	84	83	82	81		min						

		Accour	nt#	Mete	r#	Si	ze		Address																		
Macaione		3602	225	992	0289/NONE	5/8"	& 5/8		28607																		
YEAR		A NAL	JAN B	FEB A	FEB B	MAR		RB 4	APRA A	APR B	MAYA	MAYB	JUNE A	JUNE B	JULY A	JULY B	AUG A	AUG B	SEPT A	SEPT B	OCTA	ОСТ В	NOV A	NOV B DEC A	DEC B	тот	AL YEAR GALLONS
	2002		0	0	0	0	0	0	0	C) 0	0	0	100	0	0	0	0	0	0	0	0) 0	0	0	0	100
	2003		0	0	0	0	0	0	0	0	500	1200	10100	9300	18800	14300	22400	19100	6100	2500	15100	14300	8000	6800	0	0	148500
	2004		0	0	0	0	0	0	800	1100) 17700	19600	31100	24700	18200	15000	25800	19200	20000	12100	14400	7600) 0	100	0	0	227400
	2005		0	0	0	0	0	0	5400	4600	14600	10000	31400	27800	39900	27400	29800	19400	13600	11200	11400	6800	2400	1300	0	0	257000
	2006		0	0	0	0	900	800	31400	22800	23600	22900	25900	19500	100	17300	33200	11000	24200	16300	14500	18500) 0	100	0	0	283000
	2007		0	0	0	0	0	100	9200	16400	24600	62300	24800	43600	17900	13400	15600	13500	30400	20700	21900	20200	16700	1000	0	0	352300
	2008		0	0	0	0	0	0	12000	3900	6000	9400	24500	27900	16800	27400	10500	20800	7700	18700	9400	22500) 0	7900	0	0	225400
	2009		0	0	0	0	0	0	1600	1400	15500	13600	13400	13000	26000	22800	24200	21500	19200	16900	5400	5100	2900	2500	0	0	205000
	2010		0	0	0	0	0	0	4200	2700	17000	15100	34100	28800	28800	25100	22600	19700	32100	30100	20900	16300) 0	0	0	0	297500
	2011		0	0	0	0	0	0	12800	10800) 23700	8700	28200	36300	9000	24400	42200	10000	33000	7200	20700	0	19100	0	0	0	286100
	2012		0	0	0	0	0	0	15200	C	33200	0	95800	0	47300	0	82500	0	58600	0	46400	0	11000	0	0	0	390000
	2013		0	0	0	0	0	0	3200	C	32200	0	44600	0	38800	0	17600	0	45200	0	12500	0	6900	0	0	0	201000
	2014		0	0	0	0	0	0	4200	c	39600	0	49800	0	49400	0	27600	0	41900	0	26100	0	1300	o	0		239900
	2015		0		0		0		0		20100)	22200		29100		31400		42600		30100		9800		0		185300
								-					VEA	RGALI	ONS						-						

Service

					Service											
	Accou	nt# Mete	r# Siz	e	Address									Syster	n DU report =	
Amelia White	374	535 9938	538 2'	II.	27928										. 49%	
981 OLD SANTA FE TRL																
YEAR	JAN	FEB	MAR		APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	ΤΟΤΑΙ	YEAR GALLONS	
2002		0	0	0	19500	36300	41700	19900	0	C) 21500	3300		0	142200	
2003		0	0	0	33700	40000	58000	53200	51300	42500) 42500	26400		0	347600	
2004		0	0	0	8800	17300	39800	65600	57400	67900	43100	52000		0	351900	\\file-svr-1\home\$
2005		0	0	0	11200	74000	71000	68700	83200	36200	99600	0 44400		0	488300	irrication audits)
2006		0	0	0	381800	101600	154700	130900	257900	247900	107400	0 23400		0	1405600	
2007		0	0	0	52700	86700	82000	91700	130100	198400	130500	38300		0	810400	
2008		0	0	0	16200	199800	327000	281900	252000	128400) 138500	0 15400		0	1359200	
2009		0	0	0	1700	102800	160700	149000	250600	170000) 99100	0 600		0	934500	
2010		0	0	0	15200	69600	281600	439100	116300	335300	26300	0 56100		0	1576200	
2011		0	0	0	87200	241400	192700	320500	285200	116800) 114100	34500		0	1392400	
2012		0	0	0	47800	189500	271900	348400	368500	304400) 191600	0 70100		0	1792200	
2013		0	0	0	12100	93700	112100	210700	194800	351300) 41400	o c		0	1016100	
2014		0	0	0	48100	115200	195700	253000	156300	314500) 14170	0 10100		0	1234600	
2015		0	0	0	4800	74100	75800	225900	105300	216400	233500	0 27100		0	962900	

Address Sufter Safter Safte	Project Name		Amelia V	Vhite	Date		June 25, 2	015	
City, State Vera/Zone/Station LOP Iop Iop <thiop< th=""> Iop<th>Address</th><th></th><th></th><th></th><th>Auditor</th><th></th><th>Sam</th><th></th><th></th></thiop<>	Address				Auditor		Sam		
Instructions betwon clearing input in the problem in the pro	City, State				Area/Zone/Stat	lion	1.00		
See instructions below on clearing input 1 I <thi< th=""> I <thi< th=""> <</thi<></thi<>									
Test Area/Station In 1 In 2 Test Run min min Catch Device Area I In 2 Test Run Im 2 Im 2 Test Run Test Run Test Run <t< td=""><td>See instructions be</td><td>low on clearing</td><td>input</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	See instructions be	low on clearing	input						
Catch Device Area Image Image Test Run Time ($f_{ik})$ Test Run min Catch Device Z Image Image <thimage< th=""> <</thimage<>	Test Area/Station			1					
	Catch Device Area			_	in ²	Test Run		min	
Catch Device Volumes I <thi< th=""> I I</thi<>	(A _{cD})					Time (t _R)			
Volumes 1 1 3 4 5 6 6 8 3 70 19 35 6 8 9 8 9 9 9 9 9 9 9 9 <td< td=""><td>Catch Device</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Catch Device								
1 25 17 33 45 16 49 65 80 3 70 19 34 10 50 66 82 4 80 20 36 51 51 66 82 5 20 21 37 51 51 67 83 5 21 37 39 53 54 70 83 7 25 23 39 55 71 85 71 85 9 25 27 41 10 55 71 85 10 25 27 41 10 55 71 85 11 25 27 44 10 70 85 91 14 47 45 16 71 93 93 93 93 93 93 93 93 93 93 93 94 93 93 <t< td=""><td>Volumes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Volumes								
2 45 18 34 50 66 67 80 20 35 50 51 67 80 20 35 50 51 67 80 80 80 80 80 80 80 80 80 81 91 91 91 91<	1	25	17	33		49	65		81
3 70 19 35 51 61 67 80 20 36 51 67 68 52 68 52 68 52 68 80 80 80 80 80 80 81 52 68 84 84 85 84 85 84 85 84 84 85 84 85 84 85 84 85 85 84 85 85 84 85 85 84 85 84 85 84 85 84 84 85 84 84 85 91<	2	45	8	34		50	66		82
4 80 20 36 51 68 52 68 51 61 51 61 51 61 51 61 51 61 51 61 51 61 51 61 51 61<	З	70	61	35		51	67		83
5 45 21 37 53 69 53 69 53 69 54 70 83 55 23 39 55 71 86 70 87 55 23 39 55 71 87 87 55 71 87 87 9 25 25 41 1 55 71 87 87 10 25 26 41 1 57 73 89 11 25 27 44 1 58 71 89 11 25 27 44 1 59 71 91 14 25 30 45 14 61 77 93 14 25 31 47 14 80 91 91 14 25 32 48 1/4 Number 80 91 91 91 10 25 37.81 Avera	4	80	20	36		52	68		84
6 50 22 38	σ	45	21	37		53	69		85
7 55 23 39	6	50	22	38		54	70		98
8 40 24 40 56 72 88 9 25 25 41 1 57 73 89 10 25 26 41 1 57 73 89 11 25 27 43 1 59 73 90 11 25 27 43 1 59 73 90 12 30 28 44 1 60 72 91 13 15 29 45 1 61 73 93 14 25 31 47 1 63 79 93 15 25 31 47 14 14 80 94 95 16 25 32 48 1/4 80 96 96 10 25 37.81 Average Low 4 25.0 90 95 10 1 1	7	55	23	39		55	71		87
9 25 25 41 \cdot 57 73 \cdot 89 10 25 26 41 \cdot 58 74 90 11 25 27 43 \cdot 59 75 91 12 30 28 44 \cdot 60 76 91 12 30 28 44 \cdot 60 76 91 13 15 29 45 \cdot 61 77 93 14 25 31 47 \cdot 63 79 94 15 32 48 \cdot 64 80 94 16 $1/4$ Number \cdot 0.4 \cdot 95 16 $1/4$ Number \cdot 0.4 \cdot 96 10une \cdot 0.5 0.4 \cdot 0.6 $ 4$ $10une$ \cdot 37.81 $Average$	8	40	24	40		56	72		88
10 25 26 42 58 74 90 11 25 27 43 1 59 75 91 12 30 28 44 1 60 76 92 13 15 29 45 1 61 77 93 14 25 30 46 1 62 78 91 14 25 31 47 1 63 79 93 15 32 48 1/4 Number 64 80 94 16 25 32 48 1/4 Number 93 93 16 25 32 48 1/4 Number 94 94 94 16 25 32 48 1/4 Number 94 96 96 16ue 25 701a Low 4 25.5 90 25.5 91 1 1 1 1 1 <td< td=""><td>9</td><td>25</td><td>25</td><td>41</td><td></td><td>57</td><td>73</td><td></td><td>68</td></td<>	9	25	25	41		57	73		68
$ \begin{array}{ c c c c c } 11 & 25 & 27 & 43 & 59 & 59 & 75 & 43 \\ \hline 12 & 30 & 28 & 44 & 50 & 60 & 76 & 92 \\ \hline 13 & 15 & 29 & 45 & 50 & 61 & 77 & 93 \\ \hline 14 & 25 & 30 & 46 & 50 & 63 & 79 & 93 \\ \hline 15 & 25 & 31 & 47 & 50 & 64 & 80 & 91 \\ \hline 16 & 25 & 32 & 48 & 50 & 64 & 80 & 91 \\ \hline 16 & 25 & 32 & 48 & 50 & 64 & 80 & 91 \\ \hline 16 & 25 & 32 & 48 & 50 & 64 & 80 & 91 \\ \hline 16 & 25 & 32 & 48 & 50 & 64 & 80 & 91 & 95 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 60 & 76 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 70 & 80 & 90 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 91 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 91 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 91 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 91 & 91 & 91 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 91 & 91 & 91 \\ \hline 16 & 1/4 \operatorname{Number} \operatorname{Catch} & 59 & 70 & 10 & 70 & 70 & 70 & 70 & 70 & 70$	10	25	26	42		58	74		90
$ \begin{array}{ c c c c c } 12 & 30 & 28 & 44 & \ldots & 60 & 60 & 76 & 92 \\ \hline 13 & 15 & 29 & 30 & 45 & \ldots & 61 & 77 & 93 \\ \hline 14 & 25 & 30 & 46 & 47 & 62 & 63 & 94 \\ \hline 15 & 25 & 32 & 32 & 48 & 14 & 63 & 94 & 95 \\ \hline 16 & 25 & 32 & 16 & 1/4 \ Number Catch \\ Devices & 1 & 16 & 1/4 \ Number Catch Devices & 1/4 \ Number Catch$	11	25	27	43		59	75		91
$ \begin{array}{ c c c c c } 13 & 15 & 29 & 45 & 161 & 177 & 49 \\ 14 & 25 & 30 & 46 & 147 & 62 & 78 & 94 \\ 15 & 25 & 31 & 47 & 148 & 63 & 79 & 95 \\ 16 & 25 & 32 & 32 & 48 & 14^{N} & 14^{N} & 63 & 79 & 95 \\ 16 & 1/4 & 140 & 64 & 80 & 95 \\ 16 & 1/4 & 140 & 167 & 64 & 80 & 95 \\ 16 & 1/4 & 140 & 167 & 64 & 80 & 95 \\ 16 & 1/4 & 140 & 167 & 160 & 160 & 160 & 160 \\ 16 & 1/4 & 140 & 160 & 160 & 160 & 160 & 160 & 160 \\ 16 & 1/4 & 140 & 160 & 160 & 160 & 160 & 160 & 160 & 160 & 160 \\ 16 & 14 & 160 & 16$	12	30	8	44		60	76		92
$ \begin{array}{ c c c c c } 14 & 25 & 30 & 46 & 1 & 62 & 78 & 94 \\ \hline 15 & 25 & 31 & 31 & 47 & 16 & 63 & 79 & 95 \\ \hline 16 & 25 & 32 & 48 & 1 & 64 & 80 & 95 \\ \hline 16 & 12 & 14 & 1/4 \ Number \ Catch \ Devices \ Total \ Catch \ Devices \ Dev$	13	15	29	45		61	77		93
$ \begin{array}{ c c c c c } \hline 15 & 25 & 31 & 47 & \ldots & 63 & 79 & 95 \\ \hline 16 & 25 & 32 & 32 & 48 & \ldots & 64 & 80 & 96 \\ \hline Number Catch & & & & & & & & & & & & & & & & & & &$	14	25	30	46		62	78		94
$ \begin{array}{ c c c c c } \hline 16 & 25 & 32 & 32 & 48 & \ldots & 64 & 80 & 96 \\ \hline Number Catch & 1 & 16 & 1/4 Number & 24 & 24 & 24 & 24 & 24 & 24 & 24 & 2$	15	25	31	47		63	79		95
Number Catch 16 1/4 Number 4 4 Devices Total Catch Devices Catch Devices 90	16	25	32	48		64	80		96
Devices Calcul Devices Calcul Devices Calcul Devices Calcul Devices Total Catch Image Devices Total Low Quarter 90 90 Average Volume Image Devices 37.81 Average Low Quarter 90 1 Average Volume Image Devices 37.81 Average Low Quarter (Vl_q) 1 1 1 Calculate Distribution Uniformity Image Low Quarter Image Devices Image Devices 1	Number Catch			16	1/4 Number		4		
VolumeImage: Normal SystemImage: Normal SystemQuarterQuarterQuarterImage: Normal SystemImage: Normal System <td>Total Catch</td> <td></td> <td></td> <td>605</td> <td>Total Low</td> <td></td> <td>90</td> <td></td> <td></td>	Total Catch			605	Total Low		90		
Average Volume (V_{avg}) 37.81Average Low Quarter (V_{lq}) 22.50Calculate Distribution UniformityIIQuarter (V_{lq}) III DU_{lq} =Average Low Quarter (V_{lq}) IIIIIII DU_{lq} =Average Low Quarter (V_{lq}) IIIIIIIII DU_{lq} = (V_{lq}) V_{lq} III <tdi< td="">III<!--</td--><td>Volume</td><td></td><td></td><td></td><td>Quarter</td><td></td><td></td><td></td><td></td></tdi<>	Volume				Quarter				
$\begin{array}{ c c c c c } \hline (V_{avg}) & (V_{avg}) &$	Average Volume			37.81	Average Low		22.50		
Calculate Distribution Uniformity Calculate Distribution Uniformity DU _{LQ} = Average Low Quarter = 0.60 Average Volume Volume	(V _{avg})				Quarter (V _{Iq})				
DUIng = Average Low Quarter = 0.60 Average Volume Volume Image Volume Image Volume	Calculate Distributio	on Uniformity							
Volume	ם ו ע =	Average Low Q	uarter	n	0.60				
Average									
Volume		Average		-					
		Volume		Ī					

Project Name		Ame	lia Whit	Ö	Date		June 25,	2015	
Address		_			Auditor		Sam		
City, State					Area/Zone/Stat	ion	2.00		
Con instructions ho									
שבב וווסנו מרנוסווס מר	NOW OIL CICCL	ndiii Siii							
Test Area/Station				2					
Catch Device Area					in ²	Test Run		min	
(A _{cD})						Time (t _R)			
Catch Device									
Volumes									
1	10	17	10	33		49	65		81
2	10	18	10	34		50	66		82
ω	15	19	U	35		51	67		83
4	30	20	15	36		52	89		84
л	85	21	25	37		53	69		85
6	30	22	30	38		54	70		86
7	25	23		39		55	71		87
8	45	24		40		56	72		88
9	35	25		41		57	73		68
10	25	26		42		58	74		90
11	25	27		43		59	75		91
12	20	28		44		60	76		92
13	15	29		45		61	77		93
14	15	30		46		62	78		94
15	15	31		47		63	79		95
16	15	32		48		64	80		96
Number Catch			22		1/4 Number		6		
Devices					Catch Devices	-			
Total Catch			510	_	Total Low		60	l	
VOIUIIIC					Quarter				
Average Volume (V _{avg})		1	23.18		Average Low Quarter (V _{iq})		10.00		
Calculate Distributi	n Uniformit	<							
DII =			er (V.)	u	0.43				
	Average								
	Volume								

	Site Nam	e: Amelia White - t	oubbler zones				Cont	acts:	
	Site Addr	ess:					Phon	e #:	
	Surveyor:			Time: S Finish	tart		Cont	acts:	
Inter #S Begin Read (http:///////////////////////////////////	Survey Da	ate:	Catch Cup Date				Phon	e #:	
Neter #S Begin Read End Read Backfrow PS Comments: line 148,0300 148,2300			Landscape (sq.	ft):			Turf S	hrubs (sq. 1	ť
Interest Begin Read End Read End Read End Read End Read End Read End Read Static Qmamnts Version 14820300 14825050 Static Qmamnts Gmamnts Gmamnts Version 14820300 14825050 Static Qmamnts Go Comments Go							(sq.		
Image: Catch Cup Count 14820300 14825050 static dynamic Bubbler zones were orginally installed installed. The system as low as G1% of design were adjustable inrirol bubbler for system as low as G1% of design were performed at the system as low as G1% of design were application of water. Recommunitation application of water. Recommunitation	Meter #'s	Begin Read	End Read		Backflo	w PSI	Commen	ts:	
Catch Cup Count Cone Head or Sprinkler Type and Location if needed Head Head or Sprinkler Type and Location if needed Head Head Head or Sprinkler Type and Location if needed Head Head Head Head Tume Head Tume		14820300	14825050		static	dynamic	Bubbler z	ones were	orginally installed
Image: Catch Cup Count American Sprinkler Type and Location if needed Head of Sprinkler Type and Head Head of Sprinkler Type and Sprinkler Type and Head of Sprinkler Type and Head Time Spring PSring PSring PSring PSring Spring Spring Table Ta							RB .50 GF	M heads.	Since installation
Zone Head or Spinikler Type and Location if needed Head or Spinikler Type and Had or Spinikler Type and Seatch Cugacy and Seatch Cugacy and Seatch Cugacy and Seatch Course are applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave with one sare applying 11% of design variable and specifications to improve DU. On ave average and the specification of the same and specification of the same and with one sare applying 11% of design variable and specification of the same and average and the specificatin the specification of the specification of the same and averag							adjustabl installed.	e Irritrol bu The svster	bbler heads have n is now a mix of
Catch Cup Count Free of the construction of marce interpretent or construction of marce interpretent or construction of design with a construction					T		Irritrol he	ads resulting of the second se	non-uniform
Zone Head or Sprinkler Type and Location if needed Head # Test Time Head PSI Test Time Head Time <							that zone	is be restor	ed to orginal
Zone Head or Sprinkler Type and Location if needed Head # # * Time Time Num PSI on Sprinkler Minit Person Person Sprinkler Minit Person							vith one water.	applying 1 system as l	tove both on acc 13% of design wa ow as 61% of des
Catch Cup Count Catch Cup Count Main Bird SD GPM Bubbler 62 10 Target: 310 Gal Status in Bird SD GPM Bubbler 62 10 Target: 600 Gal Status in Bird SD GPM Bubbler 33 10 Target: 50 Gal Status in Bird SD GPM Bubbler 33 10 Target: 50 Gal 203% I 7 Rain Bird SD GPM Bubbler 110 10 Target: 50 Gal 203% I 8 Rain Bird SD GPM Bubbler 110 10 Target: 550 Gal 203% I 9 Rain Bird SD GPM Bubbler 110 10 Target: 550 Gal 203% I 9 Rain Bird SD GPM Bubbler 110 10 Target: 550 Gal 203% I 10 Rain Bird SD GPM Bubbler 110 10 Target: 550 Gal 115% I 11 Rain Bird SD GPM Bubbler 110 10 Target: 475 Gal 203% I 11 Rain Bird SD GPM Bubbler 95 10 Target: 475 Gal 30 Gal 115% I 11 Rain Bird SD GPM Bubbler 95 10 Target: 285 Gal 196% I<	Zon	e Head or Spri Location if n	nkler Type and eeded	Head #	Test Time (min)	Head PSI on Zone	T=Slanted, C=Clop BN=Broken Nozzl Screw Down Too Pressure at Head Broken Valve, NC	gged, BI=Blocked Sp e, CO=Cap Off, WS= Far, RF=Runoff, OV= , UP=Stuck Up, RTF= = Nozzle Color, CNF-	ay, BS=Broken Stern, BH=Broke Vrong Spacing, WA=Wrong Arc, Overspray, LH= Low Head, LPSI Rotation Too Fast, MH= Missing Can Not Find, NST=No Start Tir
5Rain Bird .50 GPM Bubbler6210Target:310 Gal6Rain Bird .50 GPM Bubbler12010Actual:212 Gal68%7Rain Bird .50 GPM Bubbler3310Target:600 Gal115%7Rain Bird .50 GPM Bubbler3310Target:165 Gal203%8Rain Bird .50 GPM Bubbler11010Target:550 Gal203%9Rain Bird .50 GPM Bubbler11010Target:550 Gal115%9Rain Bird .50 GPM Bubbler11010Target:550 Gal115%10Rain Bird .50 GPM Bubbler11010Target:550 Gal115%11Rain Bird .50 GPM Bubbler5710Target:475 Gal196%11Rain Bird .50 GPM Bubbler5710Target:285 Gal196%11Rain Bird .50 GPM Bubbler5710Target:285 Gal196%12Rain Bird .50 GPM Bubbler5710Target:285 Gal70%12Rain Bird .50 GPM Bubbler5710Target:555 Gal70%12Rain Bird .50 GPM Bubbler5710Target:565 Gal70%12Rain Bird .50 GPM Bubbler5710Target:565 Gal70%12Rain Bird .50 GPM Bubbler5110Target:565 Gal70%1310HTarget:565 Gal70%70%14H<	Catch Cup Coun						Mr Korstor Noz Xerisca pe or Shru Notes as needed	ib Bed, [Count numt	er of Trees, Shrubs per Zonej, J
Image: systemImage:	л	Rain Bird .50	GPM Bubbler	62	10		Target:	310 Gal	
6 Rain Bird .50 GPM Bubbler 120 10 Target: 600 Gal 7 Rain Bird .50 GPM Bubbler 33 10 Target: 155 Gal 115% 7 Rain Bird .50 GPM Bubbler 110 10 Target: 155 Gal 203% 8 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 10 Rain Bird .50 GPM Bubbler 95 10 Target: 330 Gal 61% 11 Rain Bird .50 GPM Bubbler 95 10 Target: 325 Gal 196% 12 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 70% 12 Rain Bird .50 GPM Bubbler 13 10 Actua	-						Actual :	212 Gal	68%
Image: section of the section of th	6	Rain Bird .50	GPM Bubbler	120	10		Target:	600 Gal	
7 Rain Bird. SO GPM Bubbler 33 10 Target: 165 Gal 8 Rain Bird. SO GPM Bubbler 110 10 Actual: 355 Gal 203% 9 Rain Bird. SO GPM Bubbler 110 10 Target: 550 Gal 115% 9 Rain Bird. SO GPM Bubbler 110 10 Actual: 635 Gal 115% 9 Rain Bird. SO GPM Bubbler 110 10 Target: 550 Gal 115% 10 Rain Bird. SO GPM Bubbler 110 10 Actual: 330 Gal 61% 11 Rain Bird. SO GPM Bubbler 95 10 Target: 475 Gal 196% 11 Rain Bird. SO GPM Bubbler 57 10 Actual: 932 Gal 196% 12 Rain Bird. SO GPM Bubbler 57 10 Actual: 200 Gal 70% 12 Rain Bird. SO GPM Bubbler 57 10 Actual: 200 Gal 70% 12 Rain Bird. SO GPM Bubbler 513 10 Actu							Actual :	690 Gal	115%
Image: systemImage:	7	Rain Bird .50	GPM Bubbler	33	10		Target:	165 Gal	
8 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 115% 10 Rain Bird .50 GPM Bubbler 95 10 Actual : 330 Gal 61% 10 Rain Bird .50 GPM Bubbler 95 10 Target: 475 Gal 196% 11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 196% 11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 196% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 30%	-						Actual :	355 Gal	203%
Image: system in the	∞	Rain Bird .50	GPM Bubbler	110	10		Target:	550 Gal	
9 Rain Bird .50 GPM Bubbler 110 10 Target: 550 Gal 1 Rain Bird .50 GPM Bubbler 95 10 Actual : 330 Gal 61% 10 Rain Bird .50 GPM Bubbler 95 10 Target: 475 Gal 475 Gal 11 Rain Bird .50 GPM Bubbler 57 10 Actual : 932 Gal 196% 11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 196% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 80%	-	,		•	•		Actual :	635 Gal	115%
Indext Indext<	9	Rain Bird .50	GPM Bubbler	110	10		Target:	550 Gal	
10 Rain Bird .50 GPM Bubbler 95 10 Target: 475 Gal 1 Rain Bird .50 GPM Bubbler 57 10 Actual : 932 Gal 196% 11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 196% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 80%							Actual :	330 Gal	61%
11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 196% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 565 Gal 565 Gal	10	Rain Bird .50	GPM Bubbler	95	10		Target:	475 Gal	
11 Rain Bird .50 GPM Bubbler 57 10 Target: 285 Gal 1 Actual: 200 Gal 70% 12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 12 Actual: 50 GPM Bubbler 113 10 Target: 565 Gal 4 Actual: 450 Gal 80%							Actual :	932 Gal	196%
Instruction Instruction Instruction Instruction Actual: 200 Gal 70% Instruction Rain Bird .50 GPM Bubbler I13 I0 Target: 565 Gal 565	11	Rain Bird .50	GPM Bubbler	57	10		Target:	285 Gal	
12 Rain Bird .50 GPM Bubbler 113 10 Target: 565 Gal 1 Actual: 450 Gal 80%							Actual :	200 Gal	70%
Actual : 450 Gal 80%	12	Rain Bird .50	GPM Bubbler	113	10		Target:	565 Gal	
							Actual :	720 G2	222

					Sei	rvice									
		Accou	nt# Mete	er# Size	e Ado	dress									
Calle Lorca		360	524 9958	984 11/2	2" 3	31399									
2075 CALLE LORCA															
YEAR		JAN	FEB	MAR	APR	MAY	IUL Y	NE J	ULY	AUG	SEPT (ост	NOV DEC	TO	TAL YEAR GALLONS
	2002		0	0	0	0	0	200	0	0	0	0	0	0	200
	2003		0	0	0	200	400	3700	20400	41700	55300	67700	46900	o	236300
	2004		0	0	0	0	0	0	0	0	0	0	0	0	0
	2005		0	0	0	0	0	0	0	0	0	0	1300	0	1300
	2006		0	0	0	0	0	0	0	0	0	0	0		0
	2007		0	0	0	0	0	0	0	0	0	0	0	0	0
	2008		0	0	0	0	0	0	0	0	0	0	0	0	0
	2009		0	0	0	0	0	0	0	0	0	0	0	0	0
	2010		0	0	0	0	0	0	0	0	14500	19800	14300	0	48600
	2011		0	0	0	0	0	0	0	o	3000	66200	39500	0	108700
	2012		0	0	0	35400 3	04400	207400	204000	216000	216500	119500	44600	0	1347800
	2013		0	0	0	46500 1	68800	236000	242500	114100	246400	107900	0	0	1162200
	2014		0	0	0	24400 1	54400	179900	220100	124400	196700	121500	27500	0	1048900
	2015		0	0	0	2600 1	17200	122600	160500	154800	192100	173600	17500	0	940900

DU = 58.3%

W

Document

Meter failure December 2003, replaced 2010 again in 2011.

Address	City, State		See instructions area	Test	Area/Station	(A _{co})	Volumes	1	2	ω	4	J	6	7	8	9	10	11	12	13	14	15	16	Number Catch Devices	Total Catch	Volume	Average Volume (Vavg)	Calculate Distrib	DU _{IQ} =	
			below on cl					50	70	75	70	55	45	30	50	60	60	75	50	55	45	60	20						Average L	Average Volume
Cuit.			earing in	_	1			17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32						ow Quar	
			Iput			1		25	55	75	60	60	50	30	45	35	25	25	20	10	10	60	55	8	1545		46.8		ter	
				0				33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48				2		н	
Auditor	Area/Zone/St				inz			35																1/4 Number Catch	Total Low	Quarter	Average Low Quarter (V _{Iq})		0.46	
	ation				Test Run	Time (t _R)		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64							
								65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	Q	195		21.67			
- CO					min																						-			
-		-			1		-	81	82	83	84	85	98	87	80	68	90	91	92	93	94	95	96		_					

רוטשנו ואמווזה	Address	City, State		See instructions t	area	Test Area/Station	Catch Device Area	Catch Device	Volumes	1	2	3	4	G	6	7	8	9	10	11	12	13	14	15	16	Number Catch Devices	Total Catch	Volume	Average Volume (V _{avg})	Calculate Distribu	DU ₁₀ =	
				below on cle						30	20	20	15	30	30	25	25	20	U	25	20	30	30	20	15					tion Uniform	Average Lo (V _{Ia})	Average Volume (Vava)
Gild				aring ir						17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32					nity	w Quar	
				Iput						15	15	10	15	25	40	10	15									24	505		21.0		ter	
					·	ω				33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48				+		u	
Date	Auditor	Area/Zone/St					'n																			1/4 Number Catch Devices	Total Low	Quarter	Average Low Quarter (V _{Iq})		0.55	+
		ation					Test Run	THIC (PR)		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64							
L		3.00	_		t		_	1		6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	00	0	7					
22, 2013					-		min			5	5	7	8	9	0	1	2		4	5	5	7	00	9			0		1.67			
+	-		_		+	_	-	-	-	81	82	83	84	85	98	87	88	68	06	91	92	93	94	95	96							

	Average Volume (Vavg)	Total Catch Volume	Number Catch Devices	16	15	14	13	12	11	10	9	00	7	6	5	4	ω	2	1	Volumes	Catch Device	Catch Device Area (A _{co})	Test Area/Station	See instructions b		City, State	Address
Cali Average Lov Average Volume (V _{avg})				55	06	30	40	30	30	25	35	50	50	40	30	25	20	35	30					pelow on clearing in			
w Quarter (32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17					put area			
V _{lq})	36	13	ω	25	20	25	25	35	25	30	30	30	30	45	50	75	55	60	25						N. C. C.		
=	.11	00	6	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33				u				
0.65	Average Low Quarter (V _{iq})	Total Low Quarter	1/4 Number Catch Devices													30	25	25	20			in ²				Area/Zone/Station	Auditor
				64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			test Run Time (t _R)	1				

	- -		
(V _{avg})		Average Low Quarter (V _{ia})	Calculate Distribution U
	"		iformity
	0.65		

	DU _{LQ} =	Calculate Distribu	(V _{avg})	Average Volume	Volume	Total Catch	Number Catch Devices	16	15	14	13	12	11	10	9	8	7	6	σ	4	ω	2	1	Volumes	Catch Device	Catch Device Area	Area/Station	Test	See instructions l		City, State	Address	Project Name
Average Volume (V _{nn})	Average Lc (V _{Iq})	tion Uniforn						15	25	20	15	40	35	10	10	10	10	15	15	15	15	20	15						pelow on cle				
	ow Qua	nity						32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17						aring ir				Calle
	ter			21.56	90	69	32	25	25	20	25	30	25	20	20	20	30	45	30	25	30	20	15						Iput				Lorca
	1			0,				48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33					7					
0.58			Quarter (V _{Iq})	Average Low	Quarter	Total low	1/4 Number Catch																			in ²					Area/Zone/St	Auditor	Date
								64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49		THIE (LR)	Test Run Time (f_)					ation		
				12.5	t u	100	00	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65		-			-			7.00		June 22
				0																						min				T			2015
		_			_			96	95	94	93	92	91	06	68	88	87	86	85	84	83	82	81		-	_		-	_	+	-	_	

		DU _{LQ} =	Calculate Distribu	(V _{avg})	Average Volume	Volume	+ - - -	Number Catch Devices	16	15	14	13	12	11	10	9	œ	7	6	5	4	ω	2	1	Volumes	Catch Device	Catch Device Area	Area/Station	Test	see instructions area		City, State	Address	Project Name
Volume	(V _{Iq}) Average	Average L	ution Uniform						20	25	25	22	30	20	20	35	30	35	25	45	30	20	25	50						below on ci				
-		ow Quar	nity		T				32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17						earing ir				Calle
		ter			30.4	76/	3	26							50	30	20	20	30	35	50	50	30	20			1			put		1		Lorca
		n			5				48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33					9					
		0.66		Quarter (V _{Iq})	Average I nw	Ollarter	Devices	1/4 Number Catch																			'n					Area/Zone/St	Auditor	Date
									64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49		e e	Test Run Time (t _r)					ation		
					20.00	140		7	80	79	78	77	76	75	74	73	72	71	70	69	89	67	66	65								9.00		June 22
1																			_								min							, 2015
				-	-	-	-	-	96	95	94	93	92	91	06	68	88	87	86	85	84	83	82	81				-			+	-		-

360612 9947493 2" 31394

DeVargas West

YEAR

	JAN	FEB	MA	R AP	R I	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	т	OTAL YEAR GALLONS
2002		0	0	0	0	0	32200	0	0	0	0	C)	0	32200
2003		0	0	0	0	1100	66400	103500	98000	33200	38200	8000)	0	348400
2004		0	0	0	1100	25600	60100	67300	52500	38100	64500	3600)	0	312800
2005		0	0	0	5700	44300	234200	66400	0	0	0	C)	0	350600
2006		0	0	0	0	0	257700	52300	51200	40100	39300	12800)	0	453400
2007		0	0	0	10200	78800	60200	154200	87100	111400	84700	11800)	0	598400
2008		0	0	0	800	109000	136400	95400	74300	47600	72000	. C)	0	535500
2009		0	0	22500	19500	84200	69500	105800	91400	68700	31000	с с)	0	492600
2010		0	100	0	23000	168100	182700	410300	125000	289100	305200	18800)	0	1522300
2011		0	0	0	19400	209000	221400	301200	298600	168800	109100	16800)	0	1344300
2012		0	0	0	30200	184900	189600	327300	410800	159600	85600	11400)	0	1399400
2013		0	0	0	86900	131800	158900	207900	84300	126000	42500	22400)	0	860700
2014		0	0	0	18800	127400	138700	138200	132900	112800	59900	3300)	0	732000
2015		0	0	0	900	84400	92900	153400	142400	192600	180100	12200)	0	858900

		Account	# Meter	•#	Size	Service Address										
DeVargas East		43039	3 99337	80	2"	31393										
YEAR		JAN	FEB	M	AR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	ΤΟΤΑ	L YEAR GALLONS
	2002		0	0	0	14500	34400	0	0	0	C) 0	100	I	0	49000
	2003		0	0	0	0	7600	76400	71200	64600	71600	69300	58200	1	0	418900
	2004		0	0	0	48500	39800	233200	153400	109900	119200	130000	64200		0	898200
	2005		0	0	0	8000	28100	107400	117000	76200	47300	18400	8400		0	410800
	2006		0	0	0	83800	53300	149200	127900	86300	38500) 16200	0		0	555200
	2007		0	0	0	20500	45500	42100	129100	58200	124000	52300	5100		0	476800
	2008		0	0	0	2000	34400	93200	195900	132500	125600	77600	30100		0	691300
	2009		0	0	1400	13500	36600	119400	88200	113700	73000	21800	700		0	468300
	2010		0	0	0	45000	112700	0	0	0	C) 0	530000		0	687700
	2011		0	0	0	33700	1037	87600	153100	175200	58500	56300	7800		0	573237
	2012		0	0	0	41800	70800	112200	142400	157300	110700	96100	56900		0	788200
	2013		0	0	0	19900	93900	100500	138200	24600	97500	24400	6900	1	0	505900
	2014		0	0	0	23000	76900	122800	113900	79900	97900	71800	2900	1	0	589100
	2015		0	0	0	4300	46000	47300	100400	89200	88800	125900	11300		0	513200

		Accour	nt# Mete	er#	Size	Service Address										
Galisteo Tennis Courts		3606	604 9916	072	2"	31395										
YEAR		JAN	FEB	N	ИAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	TO	TAL YEAR GALLONS
2	002		0	0	0	300	100	100	400	500	0	4500	980	D	0	15700
2	003		0	0	0	16200	25100	29700	166900	56600	22700	32400	750	D	0	357100
2	.004		0	0	0	0	57200	48200	25700	6100	10300) 0) (D	0	147500
2	005		0	0	0	100	7200	82200	0	0	0	0 0	19600	0	0	285500
2	006		0	0	3300	600	1000	323600	63300	23900	0	28100	2860	D	0	472400
2	007		0	0	0	0	21200	37300	0	0	0) () 21960	D	0	278100
2	008		0	0	0	2800	63100	127800	52100	33700	36800	56200	1690	0	0	389400
2	009		0	0	0	2700	97300	43300	61900	69200	43300	8700	600	0	0	332400
2	010		0	0	0	19400	29000	47600	123000	12100	70900	77500	1430	0	0	393800
2	011		0	0	0	7100	6100	17000	30100	0	0) (29300	D	0	353300
2	012		0	0	0	13200	41800	61000	136900	88800	136900	121600	1250	D	0	612700
2	013		0	0	0	18800	89000	81200	105000	69300	95300	46000) (0	0	504600
2	014		0	0	0	15400	68400	80000	122600	85000	123300	100200	2550	D	0	620400
2	015		0	0	0	16000	42300	97200	118800	128600	108300	113100)	0	0	624300

		Account #	Meter #	Size	Addre	ess										
Orlando Fernandez		360516	9922356	1 1/2'	31	400										
YEAR		JAN	FEB	MAR	APR	MAY	' J	UNE	JULY	AUG	SEPT	ОСТ	NOV I	DEC	TOTAL YEAR GA	LLONS
	2002	0	0	1	0	0	0	44400	0	0	0	0	0	C)	44400
	2003	0	0)	0	460 4	18000	88100	89300	68400	11800	36700	19600	() :	362360
	2004	0	0 0)	0 5	800 7	71500	108300	91500	75000	99300	46300	0	C) 2	497700
	2005	0	0)	0 19	100 4	16300	118400	97000	104500	81300	13600	4900	C) 2	485100
	2006	0	0)	0 81	.300 e	55800	80800	66300	57900	39800	39300	0	() 🖌	431200
	2007	0	0 0)	0 26	500 5	53400	48400	78900	47800	111900	6400	0	C) 3	373300
	2008	0	0 0)	0 27	400 4	46400	113900	52900	46700	50200	53000	0	() 3	390500
	2009	C	0)	0 9	900 3	33900	67900	79300	102100	98300	79000	0	() 🖌	470400
	2010	C	0 0)	0 8	400 6	51900	115000	133600	81000	133200	102100	29300	() (664500
	2011	C	0)	0	0	0	0	o	420500	10600	83800	2300	() 5	517200
	2012	0	0)	0 32	500 6	57600	108400	165100	164200	125500	96400	20700	() 7	780400
	2013	0	0)	0 27	400 10	01700	115600	110500	65300	112600	37500	0	() 5	570600
	2014	C	0)	0 8	700 6	51100	75700	124900	15700	100300	74200	6800	() 🖌	467400
	2015	C	0 0	1	0	500 4	43500	36800	66800	66300	79100	73600	6100	() :	372700

Service

			Service	
Account #	Meter #	Size	Address	
369191	99370871/2	4"&4"	31017	

Patrick Smith

	JAN A	JAN B	FEB A	FEB B	VIARA	MARB	APRA	APR B	MAYA	MAYB	JUNE A	JUNE B	JULY A	JULY B	AUG A	AUG B	SEPT A	SEPT B	DCT A	ОСТ В	NOVA	NOV B	DEC A DE	СВ	OTAL YEAR GALLONS
2002	2610	0 23580	61200	406900	4000	0	16300	0	16800	0	12500	C) 14200) 0	14000	0	15600	0	11700	0	9700	300	0	0	845100
2003		0	0 0	0	100	0	9300	1000	2400	3500	11900	106500	13400	140000	11800	123700	10300	103300	10600	104000	38300	154100	0	0	844200
2004		0	0 0	0	0	0	1000	0	2300	83200	17000	82200) 15700	139500	17400	160700	15900	154700	16800	156000	17700	84400	18700	0	983200
2005	2030	0	0 19900	0	13300	0	19300	124600	64600	1204300	87500	969000	73800	1331400	63600	809000	70400	1191100	20500	395300	0	1100	0	300	6479300
2006	7520	x	0 16900	0	7100	0	0	0	50600	0	56800	1406600	45500	691500	72300	677000	18200	221300	19300	247000	6700	39000	5000	0	3656000
2007	230	0	0 2400	0	2400	0	3900	39800	6100	198200	68700	416800) 39100	314700	53700	421700	62000	489700	64800	513700	200	400	0	0	2700500
2008		0	0 0	0	0	0	59900	12600	38900	299900	53400	450400	43600	359800	45000	378000	41400	339300	37200	280700	0	0	5400	299	2445799
2009		0	0 0	0	2300	1200	25600	101800	29200	271600	22000	235100	58000) 324100	72000	348600	60300	283100	0	123900	0	0	0	0	1958800
2010		0	0 0	0	0	0	27300	25400	30400	164800	26900	345500	214300	766500	70800	189800	25500	516900	72500	274400	93200	112200	0	0	2956400
2011		0	0 0	0	0	0	15800	183400	43600	211000	69400	332200	96000	426700	137200	775500	31200	167700	29300	153000	5200	53600	0	0	2730800
2012		0	0 0	0	0	0	16200	59800	56500	201100	81500	360700	157700) 1731300	98000	588400	86000	420600	79900	359800	22800	100600	0	0	4420900
2013		0	0 0	0	0	0	2100	0	55300	249500	93000	435200) 138600) 530400	12500	201800	61200	275600	15100	71500	3000	6100	0	0	2150900
2014		0	0 0	0	0	0	300	1600	43600	213000	57700	290000	63200	314300	38600	189900	53400	294700	42000	232100	5300	30700	0	0	1870400
2015		0	0 0	Ó	0	0	0	200	0	0	0	() () (0) 0	0	0	0	0	0	0	0	200
										Y	EAR GA		S												
	700000	0											-			_			_			_			
	600000	0			_	647	9300					_		-											
	500000	0			-		/							_			_		_						
	400000	0			-/		1	1556000	i.									\$20900				-			
	300000	0			1				-	700600	4 -513-			295	6400	273080	0	1				-			
	200000	0			/						- 2445	299	1958800						21500	00	1870400	-			
	100000	0 845100	* 84420	0	983200																1	-			
		0		+	_												-		-			\$200			
		2002	2003	2004		2005	3	2006	2007		2008	2	2009	2010	2	2011	2012		2013	20	14	2015	1		

Irrigation upgrade 2005 - Irrigation upgrade 2011/2012, irrigation failure 2015. Replacement scheduled 2016

					Service									
	Accour	it# Met	er#	Size	Address									
	3578	78 9937	7005	2"	31406									
	JAN	FEB	M	AR /	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	TOTAL YEAR GALLONS
2002		0	0	0	0	0	64700	100	10000	0	100	0	() 74900
2003		0	0	0	0	47200	86800	86900	142200	107100	15900	0	(3 486100
2004		0	0	0	500	27200	133700	140300	143200	138800	144200	70500	(0 798400
2005		0	0	0	20000	62700	81300	132500	201100	199500	82300	2000	() 781400
2006		0	0	0	116900	73400	114000	120400	157300	110400	42400	12200	(o 747000
2007		0	0	0	27800	110900	69500	232500	126800	164000	100000	3100	(3 834600
2008		0	0	100	43400	74400	209900	224100	90200	128000	72700	300	(3 843100
2009		0	0	0	23600	106000	89900	129200	143300	133400	76000	800	(0 702200
2010		0	0	0	9700	59200	99600	199600	97900	164000	132200	36300	() 798500
2011		0	0	0	35300	96100	122000	196200	178600	71300	55500	12700	(J 767700
2012		0	0	0	43900	97900	180600	180900	191800	160000	120300	35500	(0 1010900
2013		0	0	0	13700	72400	194300	156300	57900	97100	32200	17700	(0 641600
2014		0	0	0	16900	87900	94000	109200	65400	102400	62900	32000	(J 570700
2015		0	0	0	1500	61200	57600	95800	65100	105500	91300	9700	(3 487700

Irrigation upgrade and tree planting 2012.

Young YEAR

		Account # M	eter# Siz	e Address									
ASHBAUGH		359582 992	291642 3"	31019									
VEAD													
YEAK	2002	JAN FEB	MAR	АРК	MAY JUNE		AUG S	EPI (OV DE		AL YEAR GALLONS	
	2002	0	0	0 0	138300 138	22300	749200	209900	201500	122/00	0	319400	YEAR GALLONS
	2003	0	0	0 20300	1176100 1673	000 1662200	987800	1111/00	709900	70400	0	7/10100	800000
	2005	0	0	0 0	350300 2259	600 1335700	1760600	1052900	603500	269200	0	7631800	800000
	2005	0	0	0 1227000	1337300 1973	000 725600	577600	555400	508200	131200	0	7031300	700000
	2007	0	0	0 225900	708700 734	500 1927309	1173800	1838000	858300	75200	0	7541709	500000
	2008	0	0	0 250300	1322700 1373	100 1787200	1384300	901400	683900	109400	0	7812300	
	2009	0	0	0 195300	814400 649	400 999500	697300	502000	500	100	0	3858500	4000000
	2010	0	0	0 100	1600 5	000 4700	1800	2700	507900	151300	0	675100	3000000
	2011	0	0	0 421200	293100 767	300 632100	792400	408000	283100	400	0	3597600	2000000
	2012	0	0	0 210900	616000 42	600 34900	1362100	1448600	1308100	361100	0	5384300	
	2013	0	0	0 304500	593000 1427	800 1076000	735600	1413900	260000	144200	0	5955000	
	2014	0	0	0 79300	938100 1030	600 1081800	600700	955600	735000	295200	0	5716300	N & & & & & & & & & & & & & & & & & & &
	2015	0	0	0 9100	629900 623	300 1004200	720200	1039600	1029300	93800	0	5149400	20 20 20 20 20 20 20 20 20 20 20 20 20 2
		M	eter# Siz	e									
		993	291641 3"	1									
YEAR		JAN FEB	MAR	APR	MAY JUNE	JULY	AUG S	БЕРТ С	DCT N	IOV DE	EC TO	TAL YEAR GALLONS	
	2002	0	0	0 30100	26700 28	800 8200	0	0	0	0	0	93800	YEAR GALLONS
	2003	0	0	0 0	6600 56	300 53100	49700	26100	19100	23100	0	234000	TEAR GALLOND
	2004	0	0	0 1100	46800 68	300 72500	44800	47200	28600	2700	0	312000	1600000
	2005	0	0	0 0	16500 113	300 61100	92700	55300	32100	14000	0	385000	1400000
	2006	0	0	0 60100	64500 102	200 38800	30400	28500	25200	6400	0	356100	1200000
	2007	0	0	0 11000	34900 40	800 102800	58200	90500	48300	3800	0	390300	1000000
	2008	0	0	0 12500	65600 69	700 90300	70800	27300	0	68800	0	405000	800000
	2009	0	0	0 14600	62100 48	300 66500	35200	66000	22200	6800	0	321700	600000
	2010	0	0	0 12900	40300 84	000 86100	53400	73000	61500	9000	0	420200	400000
	2011	0	0	0 44100	29700 98	/00 93100	11/500	59300	40400	0	U	482800	300000
	2012	0	0	0 71100	219800 10:	000 197700	237900	208600	202700	17800	0	1426100	20000
	2013	0	0	0 58600	120000 122	000 187700	203700	116500	32200	7400	0	10/3200	
	2014	0	0	0 10000	120000 134	500 135200	74000	120200	124800	11100	0	759200	201 202 202 202 202 202 202 202 202 202
	2015	U	U	0 37400	400 03	129200	00000	130300	124000	11100	U	552500	
		M	eter# Siz	e									
		qq	57632 1										
YEAR		JAN FEB	MAR	APR	MAY JUNE	JULY	AUG S	SEPT O	OCT N	IOV DI	EC TO	TAL YEAR GALLONS	
	2002	12400	10900 1	1300 10600	13400 12	400 10000	9900	9100	8900	10700	10800	130400	VEAR CALLONS
	2003	9800	10700	0 20200	8900	400 12000	11400	11100	13100	8100	10300	125000	TEAK GALLONS
	2004	10300	10500 10	0800 9400	12000 13	200 14800	11200	17600	7800	9300	8400	135300	200000
	2005	10000	10500 10	0500 9800	8300 14	400 16500	10100	12200	8800	10200	12900	134200	180000
	2006	10800	10000 8	8800 11100	10500 1	100 11500	13400	2800	100	3700	11400	109200	160000
	2007	10700	11400 10	0600 9900	13000 30	500 7500	0	21600	10500	7300	9500	142500	
	2008	9500	10300 9	9800 11000	9700	500 11000	7700	7400	9700	8300	7600	111500	10000
	2009	9800	7100 8	8100 8600	7400	100 7400	9300	9200	9000	9300	8800	102100	80000
	2010	9800	8400 8	8000 9300	12500 10	800 9500	8600	7400	2000	6600	4800	97700	60000
	2011	900	ď	0 0	12000	0 0	0	0	0	115600	o	128500	40000
	2012	15700	6400	6100 6100	8600 30	200 18000	14500	14800	14500	8700	6000	155600	20000
	2013	6400	6600	6100 8200	11800 1	500 9000	10200	14500	7700	6800	7400	112200	0
	2014	6500	7400	7800 11400	17900 20	500 15700	11100	14200	8800	5100	6300	132700	202 202 202 202 202 202 202 202 202 202
	2015	5400	4400 4	4800 14700	10600 5	200 24000	23100	25000	7600	5100	5900	188800	
		543600 319400	93800 130	0400									

Service

4071700 3712700

7857400 7410100

8151000 7631800

7500600 7035300 8074509 7541709

8328800 7812300

4282300 3858500

1193000 675100 4208900 3597600

6966000 5384300

7140400 5955000

6608200 5716300

5930500 5149400

234000 125000

312000 135300

385000 134200 356100 109200

390300 142500

405000 111500 321700 102100

420200 97700

482800 128500

1426100 155600

1073200 112200

759200 132700 592300 188800

					Se	rvice										
		Account #	Meter#	Size	Ad	dress										
Cielo Vista		558413	9958991	l 11/2 "	4	47167										
1058 Calle Carmelita																
YEAR		JAN	FEB	MAR	APF	R N	ЛАҮ	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	ΤΟΤΑ	L YEAR GALLONS
2	2002															0
2	2003															0
2	2004															0
2	2005															0
2	2006															0
2	2007															0
2	2008															0
2	2009															0
2	2010															0
2	2011															0
2	2012							(17600) 5220	0 9710	0 175800	7800	J	0	350500
2	2013	0	()	0	7400	78700	132400	99300	3770	0 7160	0 19100	14600	J	0	460800
2	2014	0	()	0	9400	44900	53200	5100	4180	0 5740	0 34200	8000	J	0	299900
2	2015	0	()	0	3600	57300	41700	51200) 4160	0 5270	69000) (C	0	317100
									YEAR	GALLC	NS					
		500000	T													
		450000	-											- /	1	

-1

Service Account # Meter # Size Address 360989 99355281/2 4"&4" 31810

JAN A JAN B FEB A FEB B MAR A MAR B APR A APR B MAY A MAY B JUNE A JUNE B JULY A JULY B AUG A AUG B SEPT A SEPT B OCT A OCT B NOV A NOV B DEC A DEC B TOTAL YEAR GALLONS 223400 1504900

Irrigation line failure 2010/2011

					Service										
		Account #	Meter #	Size	Address								Syst	tem DU report =	
Gregory Lopez		360284	9932480	2"	31194									43.67%	
1230 San Felipe Ave															
YEAR		JAN	FEB	MAR	APR	MAY .	JUNE .	JULY	AUG	SEPT	ост і	NOV DEC	TOT	AL YEAR GALLONS	
	2002	0	0	0	0	0	0	0	60300	0	0	0	0	60300	(W)
	2003	0	0	0	0	231200	234700	2900	253600	51700	92600	37300	0	904000	
	2004	0	0	0	4600	244200	212400	271100	147800	235300	141500	24100	0	1281000	\\file-svr-1\home\$\
	2005	0	0	0	44700	82400	396100	320900	304300	258400	43500	2100	0	1452400	rwwood\Audit - DU
	2006	0	0	11400	0	0	815700	243200	259600	244100	141000	0	0	1715000	Sheets - Gredony
	2007	0	0	0	80100	292000	135900	559800	270800	422400	0	190800	0	1951800	
	2008	0	0	0	200200	188600	269700	352300	262800	273100	165700	0	0	1712400	
	2009	0	0	5200	50700	186600	174600	227700	60000	518400	94900	23200	0	1341300	
	2010	0	0	0	17100	129900	319800	450400	195600	394000	312400	83800	0	1903000	
	2011	0	0	0	92700	197600	266200	344100	427400	133600	134800	0	0	1596400	
	2012	0	0	0	62300	240600	362400	490100	464800	388300	299900	116700	0	2425100	
	2013	0	0	0	32300	183000	267800	287200	189500	359000	87600	51800	0	1458200	
	2014	0	0	0	45500	271000	255400	273800	168300	241600	138200	60900	0	1454700	
	2015	0	0	0	26200	130700	180900	290700	164000	284000	261200	0	0	1337700	

Project Name		Greg	ory Lope	ž	Date		June 25, 2	2015		
Address					Auditor		Sam			
City, State					Area/Zone/Stat	ion	1.00			
See instructions be	low on clear	ing inpu	tarea							
Test Area/Station				4						
Catch Device Area					in ²	Test Run		min		
(A _{cD})						Time (t _R)				
Catch Device										
Volumes										
1	30	17	50	33		49	65		81	
2	30	18	40	34		50	66		82	
ω	25	19	40	35		51	67		83	
4	25	20	45	36		52	68		84	
σ	25	21	30	37		53	69		85	
6	25	22	40	38		54	70		86	
7	25	23	45	39		55	71		87	
00	25	24	100	40		56	72		88	
9	35	25		41		57	73		68	
10	20	26		42		58	74		90	
11	20	27		43		59	75		91	
12	10	28		44		60	76		92	
13	45	29		45		61	77		93	
14	40	30		46		62	78		94	
15	40	31		47		63	79		95	
16	55	32		48		64	80		96	
Number Catch			24	Ī	1/4 Number		6			
Devices				Ċ.	Catch Devices					
Total Catch			865		Total Low		125			
Average Volume			36.04		Average Low		20.83			
(V _{avg})					Quarter (V _{Iq})					
				-						
Calculate Distributi	on Uniformit	<								
DU _{LQ} =	Average Lo	w Quart	er (V _{lq})	u	0.58					
	Average									

See instructions below on clear (integration) Import area Import area <th>See instructions below on clearing input area in i</th> <th>Project Name Address City. State</th> <th></th> <th>Greg</th> <th>ory Lop</th> <th>ez</th> <th>Date Auditor Area/Zone/Stat</th> <th></th> <th>June 25, Sam 3.00</th> <th>2015</th> <th></th>	See instructions below on clearing input area in i	Project Name Address City. State		Greg	ory Lop	ez	Date Auditor Area/Zone/Stat		June 25, Sam 3.00	2015	
Test Area/Station Image Image <th>Test Area/Station Image <thimage< th=""> Image Image</thimage<></th> <th>See instructions be</th> <th>blow on clear</th> <th>ing input</th> <th>area</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Test Area/Station Image Image <thimage< th=""> Image Image</thimage<>	See instructions be	blow on clear	ing input	area						
Catch Device Area Image Image Image Image Image Test Run Catch Device 10 17 20 30 <	Catch Device Area Image Image <thimage< th=""> Image Image</thimage<>	Test Area/Station		-		ω					
(Ac, b) (Ac, c) <		Catch Device Area					in ²	Test Run			min
volumes volumes volume volu	volumes 1 10 17 20 33 10 17 20 33 49 3 10 17 20 34 50 50 50 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50	(A _{cD}) Catch Device						lime (r _R)			
1 10 17 20 33 10 17 20 34 1 50 3 10 19 15 35 36 51 51 4 15 20 20 36 37 51 51 5 15 20 21 25 37 51 51 6 15 22 15 38 1 51 7 15 23 15 39 1 51 9 15 24 10 40 1 51 11 20 25 5 41 1 51 11 20 27 5 41 1 51 13 20 21 5 41 1 51 14 20 30 1 47 51 51 14 10 31 1 47 14 16 51	1 10 17 20 33 10 17 20 33 10 18 20 34 10 50 3 10 15 20 20 36 51 53 51 51 51 51 51 51 <td>Volumes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volumes									
2 10 18 20 34 10 15 35 5 3 15 20 20 36 1 52 5 6 15 21 25 37 5 5 5 7 15 21 22 15 38 1 55 8 15 21 21 10 40 1 55 9 15 24 10 40 1 1 56 10 15 26 1 41 1 56 11 20 27 1 41 1 56 11 20 27 2 41 1 56 13 21 2 2 41 1 56 14 20 30 1 47 50 56 15 31 1 47 14 160 56	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	10	17	20	33		49		65	65
3 10 19 15 20 20 30 50 5 15 21 21 25 37 38 54 54 7 15 21 22 15 30 54 54 8 15 21 20 21 40 54 54 9 15 23 15 30 14 57 56 10 20 25 28 14 10 57 58 11 20 27 28 44 10 59 51 12 25 29 24 46 10 51 51 14 20 21 21 46 10 62 62 15 10 32 14 14 10 62 63 16 10 32 14 14 10 63 64 16 10	3 10 19 15 35 15 20 20 36 15 37 5 5 15 21 25 37 38 5 53 6 15 21 25 37 38 53 7 15 23 15 39 55 8 20 25 14 10 40 55 9 20 25 24 41 14 57 10 15 26 27 41 41 57 11 20 27 28 44 59 51 11 20 29 24 45 54 59 11 20 31 47 46 60 62 15 31 5 14 14 63 64 16.04 48 1/4 160 64 64 16.04 140	2	10	18	20	34		50		66	66
4152020301551521253738335371523153930548152310404055920271041157102027104115711202728411591225291446159142030144760611525293147161142031147616115203114761611610311476161161031116163161031116163161032111641610381164641610381116416111111641611111164161111111161111111171111111181111 <td>4 15 20 20 36 5 5 15 21 25 37 53 6 15 21 25 37 53 7 15 23 15 39 55 8 20 25 14 10 40 55 9 20 25 24 10 41 55 10 20 25 24 43 24 57 11 20 27 24 43 24 59 11 20 27 24 44 59 51 13 20 29 24 46 24 63 14 20 31 47 48 44 63 15 10 32 14 47 63 64 16 11 14 14 64 64 64 24 14 14</td> <td>З</td> <td>10</td> <td>19</td> <td>15</td> <td>35</td> <td></td> <td>51</td> <td>1</td> <td>67</td> <td>67</td>	4 15 20 20 36 5 5 15 21 25 37 53 6 15 21 25 37 53 7 15 23 15 39 55 8 20 25 14 10 40 55 9 20 25 24 10 41 55 10 20 25 24 43 24 57 11 20 27 24 43 24 59 11 20 27 24 44 59 51 13 20 29 24 46 24 63 14 20 31 47 48 44 63 15 10 32 14 47 63 64 16 11 14 14 64 64 64 24 14 14	З	10	19	15	35		51	1	67	67
S 15 21 25 37 15 38 15 39 15 39 54 8 15 23 15 39 10 40 57 9 20 25 26 10 41 10 57 10 20 27 10 41 10 57 11 20 27 12 43 10 59 11 20 27 20 43 10 59 11 20 27 20 43 10 59 12 20 20 30 45 59 59 14 20 30 1 45 50 60 15 10 31 1 47 14 63 16 10 32 1 48 14 64 16 10 38 1/4 10 64 <td< td=""><td>5 115 21 25 37 5<!--</td--><td>4</td><td>15</td><td>20</td><td>20</td><td>36</td><td></td><td>52</td><td>1</td><td>68</td><td>68</td></td></td<>	5 115 21 25 37 5 </td <td>4</td> <td>15</td> <td>20</td> <td>20</td> <td>36</td> <td></td> <td>52</td> <td>1</td> <td>68</td> <td>68</td>	4	15	20	20	36		52	1	68	68
6 5 22 15 38 54 7 15 23 15 39 55 8 20 24 10 40 40 57 9 20 26 2 41 1 57 10 20 27 2 41 1 57 11 20 27 2 43 1 59 12 25 28 24 40 1 60 13 20 30 45 1 61 14 20 31 47 41 63 15 31 5 48 1/4 Number 64 16 32 4 1/4 Number 64 64 14 10 4 1/4 Number 64 64 16 10 4 1/4 Number 64 64 16 10 4 <td< td=""><td>6 5 22 15 38 15 39 54 7 15 23 15 39 55 55 8 20 25 24 10 40 57 9 20 26 24 40 57 56 10 15 26 24 41 20 57 11 20 27 24 43 20 59 11 20 27 28 44 20 59 14 20 30 45 20 63 15 15 31 47 47 63 16 10 32 48 1/4 Number 64 Number Catch 10 32 48 1/4 Number 64 10 32 48 1/4 Number 64 64 Number Catch 1.04 Average Low 64 1/4 Numer 64 1/4 Nur</td><td>5</td><td>15</td><td>21</td><td>25</td><td>37</td><td></td><td>53</td><td></td><td>69</td><td>69</td></td<>	6 5 22 15 38 15 39 54 7 15 23 15 39 55 55 8 20 25 24 10 40 57 9 20 26 24 40 57 56 10 15 26 24 41 20 57 11 20 27 24 43 20 59 11 20 27 28 44 20 59 14 20 30 45 20 63 15 15 31 47 47 63 16 10 32 48 1/4 Number 64 Number Catch 10 32 48 1/4 Number 64 10 32 48 1/4 Number 64 64 Number Catch 1.04 Average Low 64 1/4 Numer 64 1/4 Nur	5	15	21	25	37		53		69	69
7 15 23 15 39 1 39 1 30 40 40 40 57 9 20 26 26 41 1 57 58 10 20 27 26 42 43 57 58 11 20 27 28 24 43 59 59 11 20 27 28 24 44 59 59 12 25 29 24 44 20 60 51 13 20 30 24 45 24 61 14 30 31 31 47 47 63 15 31 31 47 1/4 Number 63 16 10 32 48 1/4 Number 64 10 14 1/4 Number 64 64 64 10 14 1/4 Number 64 64 <td>7 15 23 15 39 40 40 55 9 10 15 24 10 41 1 56 10 15 26 1 41 1 57 10 20 27 2 41 1 57 11 20 27 28 42 1 59 12 25 28 2 44 1 59 13 25 29 45 1 60 61 14 15 15 31 4 1 61 62 14 10 32 1 47 1 61 63 15 15 31 1 48 1/4 Number 64 64 Number Catch 1 1 1 1 64 64 64 Nurage Volume 1 1 1 1 1 1 1</td> <td>6</td> <td>U</td> <td>22</td> <td>15</td> <td>38</td> <td></td> <td>54</td> <td></td> <td>70</td> <td>70</td>	7 15 23 15 39 40 40 55 9 10 15 24 10 41 1 56 10 15 26 1 41 1 57 10 20 27 2 41 1 57 11 20 27 28 42 1 59 12 25 28 2 44 1 59 13 25 29 45 1 60 61 14 15 15 31 4 1 61 62 14 10 32 1 47 1 61 63 15 15 31 1 48 1/4 Number 64 64 Number Catch 1 1 1 1 64 64 64 Nurage Volume 1 1 1 1 1 1 1	6	U	22	15	38		54		70	70
8 15 24 10 40 41 57 9 15 26 1 41 1 57 10 20 27 2 43 57 58 11 20 27 2 43 59 59 12 25 28 2 44 59 60 13 20 30 45 46 51 61 14 20 30 47 46 63 63 15 31 5 47 48 1/4 Number 63 16 10 32 2 48 1/4 Number 64 16u 32 2 48 1/4 Number 64 64 16u 10 32 2 48 1/4 Number 64 64 16u 10 38 Total Low 64 64 64 64 64 64 64 64	8 15 24 10 40 40 56 9 15 26 1 41 1 57 10 20 25 26 1 42 57 58 11 20 27 28 24 43 1 59 12 20 29 29 44 1 60 13 20 30 45 1 61 14 10 31 1 47 61 62 15 31 32 47 14 63 63 16 10 32 48 1/4 Number 63 64 Number Catch 10 32 48 1/4 Number 64 64 Number Catch 10 32 48 Average low 64 64 Nureage Volume 16.04 Average low Average low 4verage low 64 1 1 1 <t< td=""><td>7</td><td>15</td><td>23</td><td>15</td><td>39</td><td></td><td>55</td><td></td><td>71</td><td>71</td></t<>	7	15	23	15	39		55		71	71
9 20 25 41 41 57 10 15 26 42 42 58 11 20 27 43 59 59 12 25 28 43 59 60 13 20 29 43 59 61 14 20 30 45 59 61 14 20 30 46 59 61 15 31 5 47 59 63 16 10 32 47 48 59 64 Number Catch 10 32 24 1/4 Number 64 Devices 10 385 Total Low 64 64 Volume Volume 48 1/4 Number 64 64 10 4 5 1000 64 64 64 10 10.04 10.04 1000 64 64 64	9 20 25 41 11 57 10 15 26 42 43 58 11 20 27 43 59 58 12 20 27 28 44 59 60 13 25 29 45 59 61 59 14 20 30 45 59 61 59 14 20 30 46 59 61 59 15 31 5 46 59 62 63 15 10 32 4 47 59 64 Number Catch 10 32 48 1/4 Number 64 Devices 10 385 Total Low 64 64 Number Catch 1 885 Total Low 64 64 Quarter (Vi _q) 1 40 40 64 64 Volume 1	00	15	24	10	40		56	_	72	72
10 15 26 42 42 58 11 20 27 43 59 59 12 25 28 29 44 59 60 13 25 29 29 45 51 61 14 20 30 45 47 61 61 15 31 5 47 48 53 63 16 10 32 48 14 63 63 16 10 32 48 14 63 63 16 10 32 48 1/4 64 63 16 10 38 1/4 1/4 64 64 10 38 1/4 1/4 64	1015264243581120274343591225284459601320304616114203046162151031474363161032481/4 Number63161032481/4 Number64Number Catch1241/4 Number64Number Catch385Total LowQuarter64Number Catch1461/4 Number64Number Catch14481/4 NumberDevices1448Total LowVolume144Average Low1Varage Volume4455.74Nug =Average Low Volume55.75.75Average155.75.75	9	20	25		41		57		73	73
11 20 27 43 43 59 12 25 28 44 44 60 13 25 29 45 45 61 14 20 30 46 47 62 15 10 32 47 48 63 16 10 32 48 1/4 Number 63 16 10 32 48 1/4 Number 64 Number Catch V 24 1/4 Number 64 Devices Volume Volume 40 Average Low Quarter Volume Volume Volume Volume Average Low Quarter (Viq) Voluarter (Viq) Voluarter (Viq) Vave Volume Volume Volume Average Low Average Low Voluarter (Viq) Voluarte	112027435912252824446013252945466114203046476215153147476316103248146316324814631632481463163254814164949146416325481416494949641649494964164949496416494949641649494964164949496416494949641649494964164949494917494949491449494949144949494914494949491449494949144949494914494949491449494949144949494914494949491449494949	10	15	26		42		58		74	74
122528 \cdot 44 \cdot 60132529304547611420303146 \cdot 62151531314747631632 \cdot 48 \cdot 6416 \cdot \cdot \cdot 48 \cdot 64Number Catch \cdot \cdot 24 \cdot $1/4$ Number Catch Devices64Number Catch \cdot \cdot \cdot $1/4$ Number Quarter \cdot \cdot Total Catch \cdot \cdot \cdot \cdot \cdot \cdot Nume \cdot \cdot \cdot \cdot \cdot \cdot \cdot Oume \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (v_{avg}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (v_{avg}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (v_{avg}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (v_{avg}) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (v_{avg}) <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>11</td> <td>20</td> <td>27</td> <td></td> <td>43</td> <td></td> <td>59</td> <td>-</td> <td>75</td> <td>75</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	20	27		43		59	-	75	75
132529454761142030304652621515313147476316103248146364Number Catch Devices III III 241/41/464Number Catch Devices $IIII$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	25	28		44		60	-	76	76
142030464762151531474763161032481/4 Number64Number Catch Devices $I = 1/4$ $I = 1/4$ Number Catch Devices64Total Catch Volume Volume $I = 1/4$ $I = 1/4$ Number Catch Devices64Total Catch Volume (Vavg) $I = 1/4$ $I = 1/4$ Number Catch Devices64Total Catch Volume $I = 1/4$ $I = 1/4$ Number 	$ \begin{array}{ c c c c } 14 & 20 & 30 & 46 & 46 \\ 15 & 15 & 31 & 47 & 47 & 63 \\ 15 & 10 & 32 & 48 & 1/4 \ Number \ Catch \\ Devices \\ Total \ Catch \\ Devices \\ Total \ Catch \ Volume \\ Volume \\ Volume \\ Vave \ Quarter \ V_{lq} \\ Quarter \ V_{lq} \\ Quarter \ V_{lq} \\ Average \ Volume \\ Volume$	13	25	29		45		61		77	77
1515153147476316103232484764Number Catch Devices I 241/4 Number Catch Devices64Total Catch Volume I I I $I/4$ Number Catch Devices64Total Catch Volume I I I $I/4$ Number Catch Devices64Average Volume (V_{avg}) I I I $I/4$ Number Quarter I Average Volume (V_{avg}) I I I I I Average Volume (V_{avg}) I I I I I Average Volume (V_{avg}) I I I I I Average Volume (V_{avg}) I I I I I Average Volume (V_{avg}) I <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>14</td> <td>20</td> <td>30</td> <td></td> <td>46</td> <td></td> <td>62</td> <td></td> <td>78</td> <td>78</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	20	30		46		62		78	78
16103248 \ldots 64Number Catch Devices1241/4 Number Catch Devices1/4 Number Catch Devices64Total Catch Volume1385Total Low Quarter7otal Low Quarter1004Average Low Quarter (V_{iq})40Average Volume (V_{avg})116.04Average Low Quarter (V_{iq})4040Calculate Distribution Uniformity11111DU _i q =Average Low Average LowAverage Low (V_{iq})5757	16103248 48 64 Number Catch Devices1241/4 Number Catch Devices1/4 Number Catch Devices585Total Low Quarter70tal Low Quarter985Total Low Quarter985Notal Low Quarter985<	15	15	31		47		63		79	79
Number Catch Devices24 $1/4$ Number Catch DevicesTotal Catch VolumeI385Total Low QuarterAverage Volume (Vave)IIAverage Low Quarter (Viq)Average Low Quarter (Viq)DUIq =Average Low Quarter (Viq)IIIDUiq =Average Low Quarter (Viq)III	Number Catch24 $1/4$ NumberDevices1/4 NumberCatch DevicesTotal Catch385Total LowVolume16.04Average LowAverage Volume16.04Average Low (V_{avg}) 16.04Average LowCalculate Distribution Uniformity11DUlq =Average Low Quarter (V_{lq})=Average Volume0.574	16	10	32		48		64		80	80
DevicesCatch DevicesTotal Catch $\ 385$ Total LowVolume $\ 385$ Total LowAverage Volume $\ 16.04$ Average Low (V_{avg}) $\ 16.04$ Average LowCalculate Distribution Uniformity $\ 16.04$ $\ 16.04$ DUlq =Average Low Quarter (Viq) $\ 16.04$	Devices Catch Devices Total Catch 385 Total Low Volume 385 Total Low Average Volume 16.04 Average Low (V_{avg}) 4 4 Valuater 4 4 Calculate Distribution Uniformity 4 4 Dulq = Average Low Quarter (Vlq) = Average Volume = Volume 4 = Average Volume =	Number Catch			24		1/4 Number			6	6
Total Catch385Total LowVolume $I6.04$ QuarterAverage Volume $I6.04$ Average Low (V_{avg}) $I6.04$ Average LowCalculate Distribution Uniformity $I6.04$ Quarter (V_{lq})DU _{LQ} =Average Low Quarter (V_{lq}) $=$ 0.57	Total Catch Volume385Total Low QuarterAverage Volume (V_{avg}) 16.04Average Low Quarter (V_{lq})Calculate Distribution Uniformity11DU_{lq} =Average Low Quarter (V_{lq})=Average Low Quarter (V_{lq})=0.57Average VolumeVolume1	Devices		-			Catch Devices		Ŀ.,		
Average Volume 16.04 Average Low (V _{avg}) Image Low Image Low Calculate Distribution Uniformity Image Low DU _{LQ} = Average Low Quarter (V _{Iq}) Image Low	Average Volume16.04Average Low (V_{avg}) If the second seco	Total Catch			385		Total Low			55	55
(V _{avg}) Quarter (V _{lq}) Calculate Distribution Uniformity Image Low Quarter (V _{lq}) DU _{LQ} = Average Low Quarter (V _{lq})	(V _{avg}) Quarter (V _{iq}) Calculate Distribution Uniformity	Average Volume			16.04		Average Low			9.17	9.17
Calculate Distribution UniformityDULQ =Average Low Quarter (VIq)=0.57	Calculate Distribution Uniformity DU _{LQ} = 0.57 Average Average 0.57 Volume Image Image Image	(V _{avg})					Quarter (V _{Iq})				
$DU_{LQ} =$ Average Low Quarter (V_{Iq}) = 0.57	DU _{IQ} = Average Low Quarter (V _{Iq}) = 0.57 Average Volume Image Image	Calculate Distributi	on Uniformit	Y							
	Average Volume	DU _{וס}	Average Lo	w Quarte	er (V _{lq})	u	0.57				

alculate Distribution U	alculate Distribution U		(avg)	verage Volume	olume	otal Catch	evices	umber Catch	6 10	5 20	4 40	3 30	2 50	1 50	0 60	20	30	10	10	30	40	30	70	60	olumes	atch Device	atch Device Area	est Area/station		ee instructions below	ity, State	ddress	roject Name	
c	erage Low	niformity																												on clearin				
]	Quarte								32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17					0	ginput			Greg	
4	er (V _{lq})			31.75		635		20													30	30	10	J						area			ory Lop	
_	u							Î	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33		1		U	1	1			ez	
	0.28	-	Quarter (V _{lq})	Average Low	Quarter	Total Low	Catch Devices	1/4 Number																			Б	. 7			Area/Zone/Sta	Auditor	Date	
									64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			Time (†.)	-			tion			
				9.00		45		л	80	79	78	77	76	75	74	73	72	71	70	69	89	67	66	65							5.00	Sam	June 25, 2	
																											min						2015	
								-	96	95	94	93	92	91	90	68	88	87	86	85	84	83	82	81										
																	Ĩ																	

Project Name		Greg	ory Lope	ž	Date		June 25, 2	2015	
Address					Auditor		Sam		
City, State					Area/Zone/Stat	tion	7.00		
Coo instructions ha			+						
Test Area/Station		-		7					
Catch Device Area					in ²	Test Run		min	
(A _{cD})						Time (t _R)			
Catch Device									
Volumes	ň	17	ň	3		ñ	C .		2
		5	0	: 0		49	2 00		; C
2	50	18	30	34	ω	50	66		82
3	35	19	25	35	15	51	67		83
4	10	20	35	36	30	52	89		84
5	50	21	80	37		53	69		85
6	30	22	100	38		54	70		86
7	U	23	105	39		55	71		87
8	2	24	100	40		56	72		88
9	25	25	75	41		57	73		68
10	50	26	50	42		58	74		90
11	30	27	35	43		59	75		91
12	40	28	50	44		60	76		92
13	30	29	10	45		61	77		93
14	25	30	35	46		62	78		94
15	25	31	2	47		63	79		95
16	20	32	0	48		64	80		96
Number Catch			36		1/4 Number		9		
Devices		1			Catch Devices				
Total Catch			1277		Total Low		47		
Volume					Quarter				
Average Volume			35.47		Average Low		5.22		
(V _{avg})					Quarter (V _{Iq})				
Calculate Distribution	on Uniformity			Ī					
DU _{LQ} =	Average Lov	v Quarto	er (V _{lq})	n	0.15				
	Average								
	Volume								

Address Vertex Auditor Sam	Project Name		Grego	DIA Lob	ez	Date		June 25, 2	015		
	Address		_			Auditor		Sam			
Seinstructions below on clearing input area I <thi< th=""> I I <thi< th=""></thi<></thi<>	City, State					Area/Zone/Stat	tion	9.00			
See instructions below on clearing: input area in ² Test Ray, Station nin nin Catch Device Area 25 1 5 1n ² Test Run nin nin 1 Catch Device Area 25 17 5 33 49 65 81 2 20 18 1 34 50 66 82 3 15 20 18 1 34 52 83 65 81 5 17 5 33 52 66 82 82 3 15 21 20 37 53 65 70 88 5 17 18 1 38 55 70 88 84 10 20 24 40 56 72 88 90 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
	See instructions be	elow on clea	ring input	area							
	Test Area/Station				9						
	Catch Device Area					in ²	Test Run		min		
Catch Device 25 17 5 33 49 65 81 1 20 18 1 34 50 66 82 3 25 19 2 35 50 66 82 5 15 20 8 36 51 66 82 6 4 22 30 37 53 65 71 83 7 15 23 39 35 54 71 87 9 15 25 41 57 73 88 10 20 26 42 57 73 89 11 30 27 43 60 76 92 11 30 27 48 77 93 89 12 30 29 45 61 77 93 14 20 30 10 57 93 94 </td <td>(A_{CD})</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>Time (t_R)</td> <td></td> <td></td> <td></td> <td></td>	(A _{CD})			-			Time (t _R)				
volumes 2 1 5 3 4 5 3 4 5 3 5 5 5 5 5 5 17 2 3 5 5 6 8 8 8 4 15 20 8 36 52 66 82 8	Catch Device										
$ \begin{array}{ c c c c c c c c c c } \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	Volumes										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	25	17	J	33		49	65		81	
3 25 19 2 35 51 67 83 66 4 21 20 8 36 52 68 84 85 7 15 21 20 37 53 69 85 70 86 84 85 7 15 23 39 39 55 71 87 85 71 87 85 71 87 85 71 87 85 71 87 85 71 87 85 71 87 87 87 73 89 30 25 71 87 89 31 89 31 89 31 89 31 89 31 89 31 31 89 31 31 89 31 31 31 41 30 36 31 31 31 47 31 30 31 31 41 30 30 31 31	2	20	18	1	34		50	66		82	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ω	25	19	2	35		51	67		83	
5 11 21 20 37 53 69 85 6 4 22 30 38 54 70 86 7 15 23 39 55 71 87 87 8 10 24 40 55 71 87 87 9 15 25 41 55 71 88 90 10 20 26 41 57 73 89 91 11 30 27 43 59 55 71 91 11 30 29 44 60 76 91 11 30 29 44 61 77 93 14 20 31 47 61 77 93 15 10 31 47 63 79 95 95 15 10 374 17.00 21/4 Number 6	4	15	20	00	36		52	68		84	
6 4 22 30 38 54 70 86 7 15 23 39 55 71 87 8 71 87 8 71 87 8 71 87 87 87 87 87 87 87 87 87 87 88 90 88 91 88 90 89 90 91 90 91 90 91	σ	15	21	20	37		53	69		85	
7 15 23 39 55 71 87 8 10 24 40 56 72 88 9 56 72 88 9 9 56 72 88 9 9 9 20 25 41 56 72 88 90 89 9 9 9 9 9 75 91 91 90 91	6	4	22	30	38		54	70		86	
8 10 24 40 56 72 88 9 15 25 41 57 73 89 10 20 26 42 57 73 89 11 30 27 43 59 75 91 12 39 28 44 60 76 92 13 35 29 45 61 77 93 14 20 30 46 62 78 94 15 10 31 47 63 79 95 16 10 32 48 14 80 96 96 Number Catch 10 32 48 64 80 96 96 16 10 37 7.00 Average low 64 80 96 96 17.00 Average low 17.00 Average low 5.00 1 1 1	7	15	23		39		55	71		87	
9 15 25 41 57 73 89 10 20 26 42 58 74 90 91 11 30 27 43 59 75 91 90 12 39 28 44 59 75 91 91 13 35 29 45 50 75 93 93 14 20 30 46 52 78 94 93 14 20 31 47 63 79 93 94 15 10 32 48 140 80 96 95 16 10 32 48 14 80 96 96 95 16 10 32 14 14 80 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96	8	10	24		40		56	72		88	
$ \begin{array}{ c c c c c c } \hline 10 & 20 & 26 & 42 & 58 & 58 & 74 & 90 \\ \hline 11 & 30 & 27 & 43 & 59 & 59 & 75 & 91 \\ \hline 12 & 39 & 28 & 44 & 60 & 60 & 76 & 92 \\ \hline 13 & 35 & 29 & 45 & 61 & 77 & 93 & 93 \\ \hline 14 & 20 & 30 & 46 & 62 & 63 & 91 & 93 \\ \hline 14 & 20 & 31 & 47 & 63 & 61 & 77 & 93 & 94 \\ \hline 15 & 10 & 31 & 47 & 63 & 62 & 78 & 94 & 94 \\ \hline 16 & 10 & 32 & 48 & 140 & 64 & 80 & 94 & 95 \\ \hline 16 & 10 & 32 & 48 & 140 & 64 & 80 & 96 & 95 \\ \hline 16 & 10 & 32 & 48 & 140 & 64 & 80 & 96 & 95 \\ \hline 16 & 10 & 32 & 48 & 140 & 64 & 80 & 96 & 96 & 95 \\ \hline 16 & 10 & 32 & 48 & 140 & 64 & 80 & 96 & 96 & 96 \\ \hline 16 & 10 & 32 & 77 & 71 & 71 & 71 & 71 & 71 & 71 & 7$	9	15	25		41		57	73		68	
$ \begin{array}{ c c c c c c } 11 & 30 & 27 & 43 & 59 & 59 & 75 & 91 \\ \hline 12 & 39 & 28 & 44 & 0 & 60 & 76 & 92 \\ \hline 13 & 35 & 29 & 45 & 61 & 77 & 93 \\ \hline 14 & 20 & 30 & 46 & 62 & 78 & 94 \\ \hline 14 & 20 & 31 & 47 & 63 & 79 & 93 \\ \hline 15 & 10 & 31 & 47 & 63 & 79 & 95 \\ \hline 16 & 10 & 32 & 48 & 64 & 80 & 96 \\ \hline Number Catch & 10 & 32 & 48 & Catch Devices & 64 & 80 & 96 \\ \hline Devices & Total Catch & 22 & 1/4 Number \\ \hline 16 & 374 & Total Low & 0 & 6 & 61 & 79 & 95 \\ \hline 16 & Average Volume & 17.00 & Average Low \\ Volume & Volume & 17.00 & Average Low \\ \hline Du_{in} = & Average Low Quarter (V_{in}) & -1 & 0 & 1 & 0 \\ \hline Average Volume & V_{in} & -1 & 0.29 & -1 & 0 & 0 & -1 & 0 \\ \hline 0 & Average & V_{in} & -1 & -1 & -1 & -1 & 0 & -1 & -1 & -1 $	10	20	26		42		58	74		90	
$ \begin{array}{ c c c c c c } 12 & 39 & 28 & 44 & \cdots & 60 & 76 & 92 \\ \hline 13 & 35 & 29 & 45 & \cdots & 61 & 77 & 93 \\ \hline 14 & 20 & 30 & 46 & \cdots & 62 & 62 & 78 & 94 \\ \hline 14 & 20 & 31 & 47 & \cdots & 63 & 79 & 93 \\ \hline 15 & 10 & 31 & 47 & 147 & 0 & 63 & 79 & 95 \\ \hline 16 & 10 & 32 & 48 & 148 & 64 & 80 & 96 & 95 \\ \hline 16 & 10 & 32 & 48 & 148 & 64 & 80 & 96 & 95 \\ \hline 16 & 10 & 32 & 22 & 1/4 Number \\ Devices & Total Catch Devices & 70 & 70 & 96 & 96 \\ \hline 10 & 10 & 374 & Total Low & 64 & 80 & 96 & 96 \\ \hline 10 & 10 & 17.00 & Average Low & 0 & 30 & 0 & 0 \\ \hline 16 & 17.00 & Average Low & 0 & 30 & 0 & 0 & 0 \\ \hline 17 & 17.00 & Average Low & 0 & 17.00 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 10 & 10 & 10 & 10 & 17.00 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	11	30	27		43		59	75		91	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	39	28		44		60	76		92	
$ \begin{array}{ c c c c c } \hline 14 & 20 & 30 & 46 & & 62 & 62 & 78 & 94 \\ \hline 15 & 10 & 31 & 47 & & 63 & 79 & 95 \\ \hline 16 & 10 & 32 & 48 & & 64 & 80 & 96 \\ \hline 16 & 10 & 32 & 14 & \mber \\ \ 16 & 10 & 32 & 22 & 1/4 & \mber \\ \ 16 & 10 & 32 & 22 & 1/4 & \mber \\ \ 17 & \ 17 & \ 14 $	13	35	29		45		61	77		93	
$ \begin{array}{ c c c c c } \hline 15 & 10 & 31 & 17 & 47 & 63 & 79 & 95 \\ \hline 16 & 10 & 32 & 48 & 64 & 80 & 96 \\ \hline 16 & 32 & 14 & Number \\ \hline 16 & 32 & 22 & 1/4 & Number \\ \hline 10 & 32 & 22 & 1/4 & Number \\ \hline 10 & 10 & 32 & 22 & 1/4 & Number \\ \hline 10 & 10 & 32 & 14 & Number \\ \hline 10 & 10 & 14 & 14 & 14 & 14 & 14 \\ \hline 10 & 10 & 14 & 14 & 14 & 14 & 14 & 14 &$	14	20	30		46		62	78		94	
$ \begin{array}{ c c c c c } \hline 16 & 10 & 32 & 48 & \hline 86 & 64 & 80 & 96 \\ \hline Number Catch & 22 & $1/4 Number Catch Devices & 6 & 6 & 6 & $1/2 Number Catch Devices & $1/4 Numbe$	15	10	31		47		63	79		95	
Number Catch 22 1/4 Number 6 6 Devices Total Catch Devices Total Low 30 <t< td=""><td>16</td><td>10</td><td>32</td><td></td><td>48</td><td></td><td>64</td><td>80</td><td></td><td>96</td><td></td></t<>	16	10	32		48		64	80		96	
	Number Catch			22		1/4 Number		σ			
	Devices					Catch Devices					
Volume Quarter Quarter Quarter Average Volume 17.00 Average Low Average Low 5.00 Image Colume Image Colume <td>Total Catch</td> <td></td> <td></td> <td>374</td> <td></td> <td>Total Low</td> <td></td> <td>30</td> <td></td> <td></td> <td></td>	Total Catch			374		Total Low		30			
Average Volume 17.00 Average Low 5.00 (V_{avg}) Image I	Volume					Quarter					
	Average Volume			17.00		Average Low		5.00			
Calculate Distribution Uniformity DU _{LQ} = Average Low Quarter (V _{Iq}) = 0.29 Average Volume Volume	(V _{avg})					Quarter (V _{Iq})					
DU _{LQ} = Average Low Quarter (V _{lq}) = 0.29 Average Volume (V) Image Image Image	Calculate Distributi	ion I Iniformit	ح								
DU _{LQ} = Average Low Quarter (V _{Iq}) = 0.29 Average Volume (V_1) Volume 0.29			LY	-							
Average Volume	DU _{וס} =	Average Lo	w Quarte	r (V _{lq})	n.	0.29					
		Average									
		(V _{ma})									

Project Name		Grego		ez	Date		June 25, 3	2015		
Address					Auditor		Sam			
City, State					Area/Zone/Stat	ion	11.00			
See instructions be	low on clear	ing input	area							
Test Area/Station				11						
Catch Device Area					in ²	Test Run		min		
Catch Device						/u-1				
Volumes										
1	15	17	45	33		49	65		81	
2	25	18	65	34		50	66		82	
З	15	19	60	35		51	67		83	
4	ω	20	55	36		52	68		84	
5	25	21	50	37		53	69		85	
6	40	22	75	38		54	70		86	
7	25	23		39		55	71		87	
8	25	24		40		56	72		88	
9	25	25		41		57	73		68	
10	35	26		42		58	74		90	
11	35	27		43		59	75		91	
12	50	28		44		60	76		92	
13	20	29		45		61	77		93	
14	40	30		46		62	78		94	
15	20	31		47		63	79		95	
16	25	32		48		64	80		96	
Number Catch			22		1/4 Number		6			
Devices					Catch Devices					
Total Catch			773		Total Low		86			
Volume					Quarter					
Average Volume			35.14		Average Low		16.33			
(V _{avg})					Quarter (V _{lq})					
Calculate Distributi	on Uniformit	~								
DU וס =	Average Lo	w Quarte	r (V _{lq})	n.	0.46					
	Average									
	(V _{avg})									

Distribution Uniformity of this system as audited: 43.7%

	Account #	Meter #	Size	Service Address									
Larragoite	359638	9914907	3"	32034									
Agua Fria & Avenida Cristobal													
YEAR	JAN I	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	TOTAL YEAR GALLONS
2002	0	0	0	0	0	0	0	0	C) 0	0	0	0
2003	0	0	1600	0	0	6400	432100	60600	30200	43100	14100	0	588100
2004	0	0	0	300	200	0	0	41400	4600	1800	200	0	48500
2005	0	0	0	0	0	3800	373900	78800	C) 100	200	0	456800
2006	0	0	100	33500	148400	375800	175800	62500	82300) 0	200	0	878600
2007	0	0	0	15600	93500	35600	110800	54600	91000	58200	8000	2500	469800
2008	100	3600	6200	104100	668500	544800	592000	193700	112700	363600	0	0	2589300
2009	0	0	0	92400	504800	345300	0	1160200	274400	221600	100	0	2598800
2010	0	0	0	0	390700	549100	623600	0	987900	448300	86300	0	3085900
2011	0	0	0	166000	361000	469600	422700	811900	258100	189000	0	0	2678300
2012	0	0	0	138000	469700	616200	989400	532000	572000	560300	167400	0	4045000
2013	0	0	0	87200	500100	472200	384700	351800	595300	139700	126200	0	2657200
2014	0	0	0	59800	403500	496000	498500	287600	460300) 275700	122500	200	2604100
2015	0	0	0	6900	297800	300900	438100	297100	514600	496100	0	0	2351500

Las Acequias 1100 Calle Ataio	Account # Met 360532 9933	er# 3810	Size 2"	Service Address 31378									System DU report = 40.50%	
YEAR	JAN FEB	I	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ост	NOV	DEC	TOTAL YEAR GALLONS	
2002	0	0	0	2900	162700	148200	400	400) C	200	2000		316800	
2003	0	0	0	17700	199400	334100	422000	428500	174700	150300	116900		0 1843600	\\file-svr-1\home\$\
2004	0	0	0	0	175500	580100	358900	373700	450000	277800	6900		0 2222900	sheets - Las
2005	0	0	0	0	192800	950800	513900	528900	293600	35200	2800	1	2518000	
2006	0	0	171200	583700	411400	454000	26900	42900	55100	15000	3500	280	0 1766500	
2007	1314200	0	0	1400	71200	638500	355100	236400	569300	293200	110700	1	3590000	
2008	0	0	0	63000	306000	439500	466200	473000	383600	405900	48700		2585900	
2009	0	0	0	0	346700	401200	446700	494300	413500	211700	400		0 2314500	
2010	0	0	0	0	387900	579800	781300	443900	592100	738500	141200	1	3664700	
2011	0	0	0	0	394100	275300	555400	961100	207700	244600	46900		0 2685100	
2012	0	0	0	195000	526400	771400	941700	793900	651300	593700	215300		0 4688700	
2013	0	0	0	114100	383900	615200	567800	269400	540600	136100	75100		2702200	
2014	0	0	0	138500	402300	483400	589200	346800	547300	338700	105500		0 2951700	
2015	0	0	0	21800	238300	228800	546300	539700	721700	645200	0		0 2941800	

	DU _{LQ} =	Calculate Distribut	(V _{avg})	Average Volume	Volume	Total Catch	Devices	Number Catch	16	15	14	13	12	11	10	9	8	7	6	5	4	Э	2	1	Volumes	Catch Device	Catch Device Area	Test Area/Station	See instructions b		City, State	Address	Project Name
Average Volume (Vaug)	Average Lo	tion Uniformit							20	26	25	16	15	12	25	20	20	25	25	0	7	50	17	23					elow on clear				
	w Quart	<							32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17				-	ing inpu	-			Las A
	er (V _{lq})			19.00		684		36	15	17	20	10	25	20	15	17	30	45	15	6	10	1	20	20		1			t area		ĺ.		cequias
	u							Ī	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	1			4					
	0.37		Quarter (V _{Ia})	Average Low	Quarter	Total Low	Catch Devices	1/4 Number													10	25	30	7			in				Area/Zone/Sta	Auditor	Date
									64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			Test Run				tion		
				7.00		63		9	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65							1.00	Sam	June 25, 2
																											min				-		2015
									96	95	94	93	92	91	90	68	88	87	86	85	84	83	82	81									

	Account	# Meter#	Size	Service Address								S	ystem DU report ≏	
Los Milagros	357722	l 9950317	2"	31080									38%	
4056 Los Milagros														
YEAR	JAN	FEB	MAR A	APR N	MAY .	JUNE .	ULY .	AUG S	SEPT (DCT N	IOV DE	C T	OTAL YEAR GALLONS	W
200	2 (0 0	0	0	100	0	0	0	0	0	0	0	100	
200	3 (0 0	0	0	900	4500	5400	4800	3100	0	0	0	18700	\\file-svr-1\home\$\ rwwood\Audit - DU
200	4 (0 0	0	0	100	0	0	0	0	0	0	0	100	sheets -
200	5 (0 0	0	0	0	0	0	0	0	0	0	0	0	
200	5 (0 0	100	0	0	700	0	0	0	0	0	0	800	
200	7 700	0 0	0	0	0	0	0	0	0	0	0	0	700	
200	3 (0 C	0	16300	300	100	0	0	0	0	500	2700	19900	
200) (0 0	0	600	6800	3800	2800	385200	75400	103100	17600	0	595300	
201) (0 C	0	0	53500	84400	125700	51300	17300	55400	129400	0	517000	
201	1 (0 C	0	46600	78700	62100	111400	279100	126400	209000	15600	0	928900	
201	2 (0 C	0	114900	186800	198800	681500	615900	178200	282700	268100	0	2526900	
201	3 () 14700	0	12800	61100	101200	139000	118000	103900	47300	47800	0	645800	
201	4 (0 C	0	85400	110100	224700	259200	309200	277400	295700	92600	0	1654300	
201	5 (0 C	0	200	152500	158900	228000	256100	240400	322200	89800	0	1448100	

	DU LQ =	Calculate Distribu		(V _{avg})	Average Volume	Volume	Total Catch	Devices	Number Catch	16	15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	Volumes	(Am) Catch Device	Catch Device Are	Test Area/Statior	See instructions	City, State	Address	Project Name
Average Volume	Average Lo	ution Uniformit								40	18	15	45	30	6	14	10	10	20	18	27	20	14	48	27			ŭ		below on clear			
	w Quart	<				Ì				32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17					ing inpu			Mila
	er (V _{lq})				20.00		700		3 5	00	26	10	15	16	ъ	30	28	13	15	20	15	40	15	10	50					t area			gros
	н		0							48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33				н				
	0.38			Quarter (V _{iq})	Average Low	Quarter	Total Low	Catch Devices	1/4 Number														ω	12	7			in,			Area/Zone/Sta	Auditor	Date
										64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			Test Run			tion		
					7.67		69		9	80	79	78	77	76	75	74	73	72	71	70	69	89	67	66	65						1.00	Sam	June 25, 2
																												min					015
										96	95	94	93	92	91	90	68	88	87	86	85	84	83	82	81		-				0		

		Accou	nt# Mei	er#	Size /	Service Address										
Candelero		3590	671 995	6531	1 1/2"	31957										
2213 Brillante St																
YEAR		JAN	FEB	М	AR A	PR	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV DE	с то	TAL YEAR GALLONS	(WA
	2002		0	0	0	0	0	0	0	0) () 0	0	0	0	
	2003		0	0	0	0	0	100	0	0) () 0	0	0	100	\\file-svr-1\home\$
	2004		0	0	0	0	4100	6100	10600	0) 2100	2900	0	0	25800	rwwood\Audit - DL
	2005		0	0	0	2100	1700	21300	19200	29100	14000) 0	13100	0	100500	sheets -
	2006		0	0	0	0	1600	1100	900	800	700	500	100	0	5700	The second second
	2007		0	0	0	0	0	0 0	0	C) () 0	0	0	0	
	2008		0	0	0	0	0	0 0	0	C) () 0	0	0	0	
	2009		0	0	28400	4700	4700) 0	6600	1900) 1400	5300	1900	0	54900	
	2010		0	0	0	0	100	900	17600	38200	37800	46100	0	0	140700	
	2011		0	0	0	40300	1002	53100	66700	77700	23600	28700	100	0	291202	
	2012		0	0	0	8400	44900	43500	51700	34600	25200	26000	8300	0	242600	
	2013		0	0	0	5100	21900	62900	68200	26600	32500	1200	0	0	218400	
	2014		0	0	0	5500	32200	66500	66800	123400	64200	69500	11100	0	439200	
	2015		0	0	0	3500	32200	24700	49000	50100) 46100) 51500	0	0	257100	

ndelero		15	15	Zone 15	1 Zone 1 Sone	GR an P He 15	
Contacts Time: Start Phone #: Finish Contacts Finish Phone #: Catch Cup Date: Phone #: Landscape (sq. ft): Turf (sq. SI End Read Backflow PSI Comments: 1535272 static dynamic Difference sho 1535366 80 45 Difference sho	35272			eded	ad or rinkler Ty d Locatic d Locatic	ad or rinkler Ty eded in Bird .2	ad or rinkler Ty d Locatic eded eded M bubbl
Image: Start Contacts Phone #: Phone #: Image: Start Image: Start Image: Start Start Image: Start Start Image: Start Image: Start Image: Start Start Image: Start Start Image: Start Start Image: Start Image: Start Image: Start	1535366			on if	ier Di Her	Er S S S S S S S S S S S S S S S S S S S	
Influence Contacts art Phone #: art Contacts art Phone #: Contacts Phone #: Difference sho Sized lateral liateral runs. 80 45 Difference sho				# Head	28 # Head	28 # He ad d	28 28 # Head
Contacts Phone #: Phone #: Contacts Phone #: Contacts Phone #: Phone #:	80			Test (min)	Test Time (min)	Test (min)	Test (min) 15
Contacts Phone #: Contacts Phone #: Turf (sq. Sl ft): Sl Comments: Comments: Difference sho Dynamic press sized lateral li lateral runs.	45			Head PSI on Zone	Head PSI on Zone n/a	Head PSI on Zone n/a	Head PSI on Zone n/a
	Difference sho Dynamic press	sized lateral lir lateral runs.	sized lateral lir lateral runs.	Sized lateral lin lateral runs. lateral runs. lateral runs. T=Slanted, C=Clogged, BI=E BN=Broken Nozzle, CO=Ca BN=Broken Nozzle, CO=Ca Screw Down Too Far, RE=R BN=Broken Valve, VC= Nozzle Broken Valve, VC= Nozzles/Heads Xeriscape or Shrub Bed, (C Notes as needed	Instanced, C=Clogged, BI= BN=Broken, C=Clogged, BI= BN=Broken Nozzle, CO=Cal Screw Dorn Nozzle, CO=Cal Screw Dorn Nozzle, CO=Cal Screw Dorn Nozzle, CO=Cal Screw Datator Nozzles/Head Screw Target = (7 GPI 14 Trees	sized lateral lin lateral runs. lateral runs. lateral runs. I-slanted, C=Clogged, BI=E BN=Broken Nozle, CO=Ca Broken Valve, NC=Ca Broken Valve, NC=Ca Broken Valve, NC=Nozzle, Fieads Broken Valve, NC=Nozzles/Heads Broken Valve, NC=Nozzles/Heads NP Rotator Nozzles/Heads Broken Valve, NC=Nozzles/Heads Actual = (7 GPI 14 Trees Broken S Broken S B Broken S B B B B B B B B B B B B B B B B B B	sized lateral lin lateral runs. lateral runs. lateral runs. T=Slanted, C=Clogged, BI=E BN=Broken Nazie, CO=Caj Broken Valve, Nozzie, CO=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, UP=Stud Broken Valve, C=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Broken Valve, Nez, Nez, Co=Caj Screw Down Too Far, RF=R Pressure at Head (UP=Stud Net Resson (UP=Stud N

GCCC	Accour 5544	nt# Mete 156 9940	er# Size)950 2''	e 4	Service Address 47053										
YEAR 2002 2003 2004	NAL	FEB	MAR	A	PR (MAY	JUNE	JULY	AUG	SEPT	ост	NOV D	EC	TOTAL YEAR GALLONS 0 0	\\file-svr-1\home\$\ rwwood\2015
2004														0	
2006														0	
2007														0	DU = 31%
2008														0	
2009														0	
2010														0	
2011											80400	23400	0	103800	
2012		0	0	0	0	383900	195500	353100	253600	239800	204000	65000	0	1694900	
2013		0	0	0	69300	200100	208300	221800	129200	223100	46900	45600	0	1144300	
2014		0	0	0	17700	193600	275200	280500	266100	320200	140200	51300	0	1544800	
2015		0	0	0	2400	137300	122600	217700	206300	228800	211600	0	0	1126700	

New Park 2010/2011

Address	City, State	See instructions b	Test Area/Station	Catch Device	Area (A _{co})	Catch Device	Volumes		2	ω	4	0	σ	7	00	G	10	11	12	13	14	15	16	Number Catch Devices	Total Catch	/olume	Average Volume	(Vavg)	Calculate Distribut	0U ^{וט} =	
		elow on cleai						100	50	50	80	45	50	50	40	60	35	35	35	40	25	30	35						ion Uniformit	Average Lo	Average Volume
		ring inpu				Ì		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32						2	w Quart	
		t area						20	25	25	0	0	0	20	35	45	40	40	25	40	30	40	40	60	2385		39.75			er (V _{lq})	
			1					33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48							u	
Auditor	Area/Zone/Sta			in ²				35	25	75	70	0	40	55	50	35	30	06	80	50	80	95	110	1/4 Number Catch Devices	Total Low	Quarter	Average Low	Quarter (V _{Iq})		0.31	
	tion		Ĩ	Test Run	Time (t _R)			49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64								
Sam	1.00				1			60	50	25	25	25	0	10	20	25	15	15	10												
								65	66	67	89	69	70	71	72	73	74	75	76	77	78	79	08	15	185		12.33				
				min																							•				

Herb Martinez	Acc	ount# Meter# 3 60575 99583441/2 4	Size "&4"	Service Address 31396																						
YEAR		JAN A JAN	NB	FEB A FEB	BB	MARA	MAR B	APRA	APR B	MAYA	MAY B	JUNEA	JUNE B	JULY A	JULY B	AUG A	AUG B S	SEPT A	SEPT B	OCT A	оств м	NOV A	NOV B	DEC A DE	СВТ	OTAL YEAR GALLONS
	2002	0	Ð	0	0	0	0	12600	27600	25700	102500	23000	98400	2500	9300	300	0	300	0	400	1300	100	0	0	0	304000
	2003	0	0	0	0	0	0	1000	4100	31600	112100	76300	236000	97200	285300	100700	289700	55900	163200	42800	126800	28900	84500	0	0	1736100
	2004	0	0	0	0	0	0	1300	0	91400	276400	201200	620500	180100	600500	114100	374000	147100	489500	96300	343800	11500	37100	0	0	3584800
	2005	0	0	0	0	0	100	2900	13000	47900	163600	231000	854000	178900	690400	153500	516700	84800	513600	0	310600	0	118100	0	0	3879100
	2006	0	0	0	0	168000	3400	0	419300	246500	441000	174400	510800	117500	357300	65900	250800	92300	241700	114200	319300	58900	132500	0	0	3713800
	2007	0	0	0	0	1400	300	58300	101100	78100	257700	76300	247400	145500	717700	268000	175600	128200	949100	53800	336300	15100	0	4900	0	3614800
	2008	14300	0	17700	0	15800	0	22900	142800	56400	324800	111900	584600	95300	609100	64400	382400	64000	343500	117300	366900	11400	63500	0	0	3409000
	2009	1200	0	2900	0	0	0	17400	0	1400	0	55900	111800	109100	700	123800	200	85700	1100	71900	8500	11200	0	0	0	602800
	2010	0	0	0	0	0	0	20700	400	78000	329300	148000	595400	751900	518400	27200	185000	149300	454300	113500	391700	24300	82100	0	0	3869500
	2011	0	0	0	0	0	0	20400	94300	126500	382300	131900	0	251000	0	239800	0	97500	0	62300	0	13100	3233300	0	0	4652400
	2012	0	0	0	0	0	0	33600	183900	113600	412200	70400	532900	103200	780500	101600	818500	B4200	753800	77000	557200	50100	221600	0	0	4894300
	2013	0	0	0	0	0	0	20900	153500	57600	426500	82100	624800	68300	530600	41700	307100	80700	570000	101500	132100	27100	80200	0	0	3304700
	2014	0	0	0	0	0	0	0	219800	0	0	145500	1143800	82000	575200	49300	346100	64100	442700	44800	100500	17100	287700	0	0	3518600
	2015	0	0	0	0	0	0	2300	17800	44200	272100	38000	241900	71100	450900	64500	407300	84400	555700	75300	436100	0	0	0	0	2761600
		6000000								_			TOTA	LYEA	R GALL	ONS										
		500000																								
		300000																	-							
		4000000							-									-		_	_					
		3000000			/									~	C 1		/						~	1. 1. A.		
		2000000	_	/												1	/									
		1000000	/													\checkmark									_	
		0 2002		2003		2004		2005		2006		2007		2008		2009	2	010	20	011	201	.2	2013	9	2014	2015

Irrigation upgrades 2009/2010 - new turf /trees/playground

1270 W ALAMEDA ST IRR.	Account # 549714	Meter : 995652	# Size 3 1"	Se Adi 46	rvice dress 5489											
YEAR 2002 2003 2004 2005 2006 2007 2008 2009 2009	JAN	FEB	MAR	APF	R M	IAY .	JUNE	JULA	AUG	SEP'	т о	ст г	NOV	DEC	TOTAL YEAR GALLONS 0 0 0 0 0 0 0 0 0	Document
2010 2011 2012 2013 2014 2015		0 0 0 0	0 0 0 0	0 0 0 0	0 3400 3200 94100 0	0 12300 32700 16100 13900	0 0 41400 22800 12500	3940 2280 2270	0 0 00 22 00 13 00 13	0 0 900 600	0 0 34300 21300 22500	0 47800 7300 13100 21000	147400 3400 7000 5600 0	0 0 0 0	0 147400 66900 188200 209400 105700	

New open space area added - Trees

0							
Site Name: SF Rive	er - Camino A	lire to Fee	edbin		Co	ntacts:	
Site Address: 127	0 W ALAMED	A ST IRRI	GATION		Pho	one #:	
Surveyor: Sam		Time: St Finish	tart 11:0	DO AM_	Co	ntacts:	
Survey Date:	Catch Cup	Date:			Pho	one #:	
	Landscape	(sq. ft):			Turf (sq.	Shrubs (sq. ft):
					ft):		
Meter #'s Begin	End Read		Backflo	w PSI	Comment	S:	
4956573 6385	640193		static	dvnami	Point of co	onnection t	noint of
2220223 0383 19	CETOHO		אמוור	c	distributio	on is restrict	ed due to improper
			128	50	pipe size f	or this long	of a run. Pipe
					friction lo	ss resulting	in low volume and
					pressure.		
unt Zone Head	or Sprinkler	Head #	Test	Head	T=Slanted, C=Clog BN=Broken Nozzle RD=Radius Screw I	ged, Bl=Blocked Spra , CO=Cap Off, WS=W Down Too Far, RF=RL	y, BS=Broken Stem, BH=Broken Head, rong Spacing, WA=Wrong Arc, noff, OV= Overspray, LH= Low Head,
Catch Cup Co ne co cat	ion if ed		(min)	Zone	LPSI=LOW Pressur Missing Head, BV= NST=No Start Time area, RX=Remove Shrubs per Zone),	: at Head, UP=Stuck: Broken Valve, NC= P MPR= MP Rotator MPR= PR turf for Xeriscape or Additional Notes as	by, tr⊨ recation r oo rast, MH= lozzle Color, CVF= Can Not Find, Nozzles/Heads Recommended for this Shrub Bed, (Count number of Trees, needed
1 Rain I	Bird .50	22	20		Target;	440 GAL	
-					Actual:	230 GAL	52%
2 Rain	Bird .50				Target;	360 GAL	
GPM	Bubbler				12 Trees		
					Actual:	259 GAL	72%
3 Rain	Bird .50				Target;	330 GAL	
GPM	Bubbler				11 Trees		
					Actual:	325 GAL	%86
4 Rain	Bird .50				Target;	360 GAL	
GPM	Bubbler				12 Trees		
					Actual:	349 GAL	87%
σ							

				Servi	ce																						
100	Account #	Meter #	Size	Addre	255																						
SF River - Feed Bin to St, Francis	360369	471391&2	484	314	405																						
YEAR		JAN A	JAN B	FEB A	FEB B	MARA	MARB	AP	RA AI	RB	MAYA	MAY B	IUNE A	JUNE B	JULY A	JULY B	AUGA	AUG B	SEPT A	SEPT B	OCT A	OCT B	NOV A	NOV B DEC	A DEC B	TOTALYE	AR GALLONS
2002		0		0	0	0	0	0	0	0	0	0	61800		0 0) (0) 0	0	0	0	0	0	0	0	0 61800)
2003		0		0	0	0	0	0	0	0	0	0	5000		0 12100) (205000) 0	128000	0	160000	0	73000	0	0	0 692000)
2004		0		0	0	0	0	0	0	0	0	0	15000		0 30900) (400000) 0	180000	0	134000	0	5000	0	0	0 1043000	J
2005		0		0	0	0	0	0	8000	0	176000	0	976000		0 17400) (453000	54700	217100	127500	23700	75200	0	6400	0	0 2291600	U (WEA)
2006		0		0	0	0	0	0	44700	230200	94400	289300	47600	33690	0 4590	123900	37500	200100	37900	254100	28300	170300	100	0	500	0 1941700	j 🦉
2007		0		0	0	0	0	0	3600	15500	61200	173100	68300	18040	0 7920	450500	41000	277200	80200	521300	39300	345900	3600	28900	0	0 2369200	Wite svr-1(homes)
2008		0		0	O	0	0	0	16200	130400	35700	307500	58600	48860	0 6060	486900	41200	315100	37400	259900	42900	225100	13400	34200	0	0 2553700	irrination auditc)
2009		0		0	0	0	0	0	16100	112000	46400	338900	25700	17920	0 4810	337600	44500	338500	35400	282700	15000	126900	1700	2200	0	0 1950900)
2010		0		D	0	0	0	0	13000	45800	22700	232600	61500	43440	0 7340	549900	31900	255300	37200	296000	45700	185700	6700	400	0	0 2292200)
2011		0		0	0	0	0	0	25700	81100	34900	257700	54500	67500	0 6040	446700	52400	398500	24500	194400	16800	165700	1900	21700	0	0 2511900	1
2012		0		0	0	0	0	0	12600	81300	41600	268700	58100	39480	0 7670	466800	89600	566200	51200	325000	62100	382800	14300	84700	0	0 2976500	}
2013		0		0	0	0	0	0	87000	30600	220500	292600	416600	37810	0 9700	336000	46200	228400	77400	383700	19000	118600	17600	82700	0	0 2832000)
2014		0		0	0	0	0	0	600	2700	84400	405300	62800	30500	0 6220	339100	39100	179400	57700	304100	38500	214700	21200	117000	0	0 2233800)
2015		0		0	0	0	0	0	3700	11000	66300	140400	57200	14130	0 5070	366000	27100	204000	70200	470700	64100	524000	300	0	0	0 2197000)
								_									_										2
													-														
														IVIAL I	EAR G	ALLOIN:	,										
		3500000				_															_						
		3000000																									
																				-		-	-				
		2500000							~				-		-												
		2000000						-	/							~							-				
		1500000						/	S																		
							1																				
		1000000				-	_														_						
		500000			/		_					_										_					
				/																							
		0.3	20	002	20	03	2004		2005		2006		2007	20	09	2009		2010	2	011	2012		2013	2014		2015	
					200		6007		- 505					A.						100			2020	2014			1

	-			_		-	Catch Cup Count		471	471	Met		Sun	Sun	Site	Site	Wa
4	2	ω		2			Zone		3912	3911	ter #'s		/ey Date	/eyor: S	Address	Name: S	Ik-I hrou
				RB .50 GPN		RN .50 GPN	Head or Sprinkler Ty and Locatio needed			10912825	Begin Read			am		SF River - #2	gh Irrigation S
							n if	10	1	109	End	Lan	Cat				ystei
				24		60	# Head		1472	13564	Read	dscape (ch Cup D	Time: S			n Audit
				20		20	Test Time (min)	ŀ	130	static	Backflo	sq. ft):	ate:	Start			and site b
							Head PSI on Zone		118	dynamic	W PSI			Finish			Valuation
			Actual:	Target:	Actual: 1	Target:	T-Slanted, C-Clogg BN-Broken Nozzle, RD-Radius Screw D LPSI=Low Pressure LPSI=Low Pressure Missing Head, 8V- NST=NO Start Time area, RX-Remove t Shrubs per Zone),				Comment	Turf (sq. ft):	Pho	Con	Pho	Con	
			739 Gal	240 Gal	156 Gal	500 Gal	ed, Bi-Blocked Sj CO=Cap Off, WS CO=Cap Off, WS at Head, UP=Stu Broken Yalve, NC Broken Yalve, NC Broken Yalve, NC Additional Notes				5	Shrubs	ne #:	tacts:	ne #:	tacts:	
			308%	8 trees	193%	20 Trees	pray, BS=Broken Stem, BH=Broken Head =Wrong Spacing, WA=Wrong Arc, =Runoff, OV= Overspray, LH= Low Head, ck Up, RTF= Rotation Too Fast, MH= =Nozele Color, CNF= Can Not Find, "a Nozeles/Heads Recommended for this or Norzles/Heads Recommended for this or Shrub Bed, (Count number of Trees, as needed					(sq. ft):					

	Account #	Meter#	Size	Service Address										
Nava Ade														
4371 Laughing Crow Ln	552175	9957709	2"	46808										
YEAR	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	TOTAL YEAR GALLONS	
2002													0	
2003													0	
2004													0	
2005													0	\\file-svr-1\home\$\ rwwood\2015
2006													0	irrination audits)
2007													0	
2008													0	
2009													0	DU = 45%
2010													0	
2011					6500	25100	55500	737300	5856	6257	7900	0	844413	
2012				48100	183200	126100	251100	199100	175700	133400	31100	0	1147800	
2013				50400	162700	167500	141600	70200	125100	26700	21600	0	765800	
2014				9600	82800	146500	160000	140200	168400	93300	41400	0	842200	
2015				1400	91500	72600	147200	149100	159200	169900	0	0	790900	

New Park 2010/2011

		DU _{IQ} =	Calculate Distribu	(V _{avg})	Volume	Total Catch	Number Catch Devices	16	15	14	13	12	11	10	9	00	7	6	U	4	З	2	1	Volumes	(A _{CD})	Area/Station	Test	See instructions area	•	City, State	Address	Project Name
Volume (Vava)	Average	Average Lo	Ition Uniform					80	50	95	30	60	28	95	65	110	130	160	95	95	95	110	20					below on ciea	-			
		w Qua	Ŧ					32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17			1		aring i			1	Nav
		rter		30.13	201	3925	40	130	180	25	45	100	110	75	125	90	150	55	80	190	130	125	60					nput				a Ade
		11						48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33			1	ц		T			
		0.47		Quarter (V _{Iq})	Quarter	Total Low	1/4 Number Catch Devices									50	110	170	120	85	130	115	100		=	:-2				Area/Zone/Sta	Auditor	Date
								64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49		Time (t _R)	H D				ation		
				40.0	400	460	10	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65							1.00	Sam	et aunr
										-																						5, ZUIS
								96	95	94	93	92	91	06	68	88	87	98	85	84	83	82	81		-		-		-			

City of Santa Fe, New Mexico

memo

Date: May 4, 2016

- To: Public Utilities Committee
- Via: Nick Schiavo, Public Utilities Director Rick Carpenter, Acting Water Division Director & Water Resources and Conservation Manager
- From: Marquita Ortiz, Water Resources Analyst∤*UD* Alan Hook, Water Resources Coordinator Assistant
- Re: Presentation of the 2015 Annual Water Report as an informational item

Purpose:

The 2015 Annual Water Report compiles and summarizes useful information about the City of Santa Fe's Water Division (Water Division) including the water supply, water production, deliveries, conserved water, treated effluent, and utility customer use. The information presented in this report contains water data through December 2015 and projections through 2016.

The purpose of this report is to provide the Santa Fe community with an annual summary of the state of the Water Division and the water supplies we depend upon. This report is submitted pursuant to City Code Section 25-9.6 SFCC 1987 and summarizes information about the Water Division's water supplies and the customers' drinking water u sage.

Highlights of this report include:

- Water Supply production of 8,167 acre-feet, including Buckman Regional Water Treatment Plant deliveries to the City of Santa Fe, including wholesale deliveries of 105 acre-feet to Santa Fe County Water Utility.
- Completion of construction at McClure Reservoir to install a new intake tower.
- Reduction in service-area gallons per capita per day (gpcd) demand of 90 (down from 95 gpcd in 2014).

Requested Action:

Staff requests that the Public Utilities Committee review the 2015 Annual Water Report and forward it to the full City Council for final review.

ANNUAL WATER REPORT

2015

City of Santa Fe • Water Division

CITY OF SANTA FE, NEW MEXICO

Javier M. Gonzales, Mayor Brian Snyder, City Manager

City Councilors

Peter N. Ives, Mayor Pro Tem, District 2 Renee Villarreal, District 1 Signe I. Lindell, District 1 Joseph M. Maestas, District 2 Carmichael A Dominguez, District 3 Cristopher M. Rivera, District 3 Ronald S. Trujillo, District 4 Mike Harris, District 4

Compiled, written and edited by the

Water Resources Staff City of Santa Fe Water Division 801 W. San Mateo Road Santa Fe, NM 87504

Contributing Departments, Divisions and Sections

City Attorney's Office ITT Department Land Use Department Utility Billing & Customer Service Division Wastewater Division Water Budget Office Water Conservation Office

Acknowledgements

Victor Archuleta David Barsanti Chuck Bear Diana Catanach Rick Carpenter Christine Chavez Brian Drypolcher Andrew Erdmann Kathleen Garcia Caryn Grosse Alan Hook Lisa Larrañaga Amy Lewis Amanda Martinez Marcos Martinez Maya Martinez Michael Moya Quita Ortiz Alex Puglisi Bryan Romero Nick Schiavo Bill Schneider

For more information visit www.santafenm.gov/water_division

Cover Photo: Nichols Reservoir in the Upper Santa Fe Municipal Watershed

TABLE OF CONTENTS

Executive summary	1
Water Supply	
Water Rights	3
Surface Water	3
Ground Water	3
Water Rights Used for "Offsets"	3
Relinquishment Credits	4
Water Production	4
Production by Supply Source	
Treated Effluent Deliveries	
Drought and Precipitation	
Water Demand	
Per Capita Consumption	
Contractual and Other Water Demands	
Santa Fe River	
Wholesale Water Deliveries	
Water Bank	
Water Resources Planning	
Fiscal Responsibility	
2016 Water Demand and Supply Picture	9

LIST OF FIGURES & TABLES

Water Supply Sources Map, Figure 1	2
Construction on new intake structure at McClure Reservoir, Figure 2	
Diversion Water Rights and Supply Portfolio, Table 1	3
2015 Projected vs Actual Monthly Production by Supply Source, Figure 3	4
City of Santa Fe Wastewater Treatment Plant, Figure 4	
City's Treated Effluent Contractors, Figure 5	5
Drought Comparisons for July 1, 2014 and December 30, 2014, Figure 6	
2015 SNOTEL Data for Santa Fe Watershed, Table 2	
Upper Santa Fe Municipal Watershed, Figure 7	
2015 Demand by Sector, Figure 8	7
GPCD with Population, Figure 9	
Santa Fe River Target Flow Hydrograph, Figure 10	
2016 Projected Monthly Production by Supply Source, Figure 11	

EXECUTIVE SUMMARY

The purpose of this report is to provide information about the state of the City of Santa Fe's Water Division and the water supplies we depend upon.

This report is submitted pursuant to City Code Section 25-9.6 SFCC 1987 and summarizes information about the City of Santa Fe's Water Division including water supply, water rights, water demand, types of water use, drought and precipitation, and water utility management information.

The City's surface water supply comes from the **Santa Fe River** and **Rio Grande**, both of which are treated through conventional and advanced treatment processes.

The **City Well Field** is mostly located in close proximity to the Santa Fe River and consists of 7 active wells located within the City limits of Santa Fe. The **Buckman Well Field** consists of 13 wells located near the Rio Grande, approximately 15 miles northwest of Santa Fe.

The Water Division supplied 8,062 acre-feet of water to its water utility customers and an additional 105 acre-feet to the Santa Fe County Water Utility, for a total production of 8,167 acre-feet for 2015. Also, the Water Division met its acequia irrigation deliveries and provided over 2,000 acre-feet of "Living River" flows to the Santa Fe River.

This report contains water data through December 2015 and anticicipated 2016 data projections.

The City of Santa Fe continued its water conservation efforts which, in part, contributed to a service-area gallons per capita per day (GPCD) demand of 90.

The overall goal of the Water Division is to ensure that our water resources are managed and protected in an efficient and responsible manner to provide the Santa Fe community with clean, reliable and safe drinking water.

WATER SUPPLY SOURCES

The City of Santa Fe has four sources of water supply (see Figure 1):

- Santa Fe River
- San Juan-Chama surface water via the Rio Grande
- City well field
- · Buckman well field

Also, the Water Division utilizes reclaimed wastewater and water conservation to reduce demand on the total supply of potable water.

Figure 1. Map of the City of Santa Fe Water Supply Sources.

WATER RIGHTS

Surface Water

The City of Santa Fe has a license to store up to 3,985 acre-feet (combined) per year of Santa Fe River water in McClure and Nichols Reservoirs. Both municipal drinking water supply reservoirs are located east of the City within the closed upper Santa Fe River municipal watershed (see Figure 1). In 2015, reservoir improvements took place and were completed at McClure Reservoir (see Figure 2).

The Buckman Regional Water Treatment Plant provides drinking water from the federal Bureau of Reclamation's San Juan-Chama Project's surface water supply via the Rio Grande. As a contractor of the San Juan-Chama Project, the City of Santa Fe can provide up to 5,230 acre-feet per year of drinking water supply from the Buckman Regional Water Treatment Plant directly to the City's water utility customers. The Buckman Regional Water Treatment Plant and the Buckman Direct Diversion Project facilities are governed by a joint City of Santa Fe and Santa Fe County board.

Figure 2. A new intake tower was installed at McClure Reservoir in 2015. In November 2014, McClure Reservoir was drained to repair the dam and install a new intake tower, replacing the old vertical tower that was built in the 1920s. Construction was completed in December 2015, at which time the City closed valves outlets to allow for snow runoff to fill the reservoir.

Groundwater

The City of Santa Fe has seven active groundwater wells within the City limits, most of which are focused near the Santa Fe River (see Figure 1). Combined, the wells can produce up to 4,865 acre feet per year of drinking water supply for Santa Fe.

The City also has thirteen groundwater wells in the Buckman well field, which is located near the Rio Grande, approximately 15 miles northwest of Santa Fe (Figure 1). The Buckman Wells are associated with several water rights, but are operated under one permit that allows the City of Santa Fe a maximum pumping rate of 10,000 acre-feet per year for drinking water supply. However, the City rarely pumps more than 1,000 acre-feet annually from these wells. The newest Buckman wells are about 2,000 feet deep and began producing water in 2003.

Water Rights Used for "Offsets"

In addition to water rights that the City of Santa Fe can directly divert for its water supply, Santa Fe maintains a portfolio of 'offset' surface water rights that are associated with the Buckman well field and the Northwest Well. The purpose of these acquired water rights is to keep the nearby stream systems 'whole' or unaffected by the impacts that pumping groundwater has on surface water.

The City of Santa Fe has acquired sufficient water rights to satisfy its current obligation on the Rio Grande, Rio Tesuque, and Rio Nambe/ Rio Pojoaque through a combination of acquired surface water rights and the City's San Juan-Chama surface water.

Source	Water Rights	Available Water
Santa Fe River	5,040	Up to 5,040 plus 1,000 to living river (when available)
City Wells	3,507/4,865	Sustainable use when needed
Buckman Wells	10,000	Sustainable use when needed
Buckman Direct Diversion	5,230*	Less water quality and/or NEPA permit restrictions

Table 1. Diversion Water Rights and Supply Portfolio (acre-feet)

*City of Santa Fe's San Juan-Chama Project water

Relinquishment Credits

New Mexico receives relinquishment credits when the quantity of Rio Grande water provided to Texas is above that required by the Rio Grande Compact. Relinquishment water allows the City to store relinquishment 'credit' water in the municipal reservoirs during times when the Rio Grande Compact would otherwise limit the City's right to store surface water.

The New Mexico State Engineer administers relinquishment credits to the City. As an alternative to using relinquishment credits, the City often releases its San Juan-Chama Project water into the Rio Grande in exchange for the permission to store Santa Fe River water, which would otherwise be prohibited by the Rio Grande Compact. The City has a current balance of 7,207 acre-feet in relinquishment credits.

Figure 3. 2015 Actual vs. Project Monthly Production by Supply Source

WATER PRODUCTION

Production by Supply Source

As shown in the Production by Source graph above (Figure 3.), the City has continued to take advantage of increased availability of surface water from the Buckman Regional Water Treatment Plant to decrease use of the City and Buckman well fields, allowing the wells to rest for use in drier years when surface water is not as readily available. In 2015, production for the City of Santa Fe's utility customers was 8,062 acre-feet, with an additional 105 acre-feet of water produced for Santa Fe County Water Utility.

Treated Effluent Water Deliveries

The City of Santa Fe's reclaimed wastewater (treated effluent) has many uses including irrigation to recreational fields and local golf courses; dust control at the regional landfill and for other construction projects; watering for livestock and wildlife on the Caja del Rio mesa; contributing to the

Figure 4. City of Santa Fe Wastewater Treatment Plant

on-site, wildlife, educational pond at the NM Game & Fish facility; and enabling flow in the lower Santa Fe River downstream of the City's wastewater treatment plant which supports the riparian ecosystem and local agriculture in the La Cienega and La Bajada areas.

The reclaimed wastewater from the City's treatment plant is sold directly to contractors via an onsite stand pipe. The total production of reclaimed wastewater was 1,904 million gallons (5,844 acre-feet) in 2015, 18% of the treated wastewater was reused and the remaining 82% (1,562 million gallons) flowed into the lower Santa Fe River (see Figure 5 above).

DROUGHT & PRECIPITATION

Drought is a normal recurrent feature in the arid southwest. Santa Fe has a very dry, high desert climate with intense sunlight. On average, the city experiences more than 300 sunny days per year. The highest temperatures in July and August are 80-90 °F with only 3-6 days per year with 90+°F highs.

Overall, Santa Fe received ample moisture in 2015. Among other factors (see Water Demand section), the precipitation likely contributed to a reduced need for outdoor watering, which accounts for approximately 40 percent of Santa Fe's total water use.

In 2015, precipitation in New Mexico was near to above

normal and was ranked as the 5th wettest year on record, and the wettest since 1986. Spring 2015 snowmelt and subsequent runoff started early and was well below normal for the 5th year in a row. Well above normal

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Figure 6. Drought comparisons for July 7. 2015 and December 29, 2015.

temperatures in early spring quickly receeded the snowpack. But the early summer months produced scattered to numerous showers and thunderstorms and July saw the development of a strong monsoon pattern, which dimished in August and September. Moisture picked up again in October, which was 244 percent of normal. November was above normal, coming in at 121 percent. The first half of December 2015 started out dry, but by the end of the month a very active weather pattern returned to the state and the year ended with a historic blizzard event that buried much of east central and southeast New Mexico in 10 to 30 inches of snow.

SNOTEL Station	Elevation (Feet)	Accumulated Precipitation
Santa Fe	11,445	46.7 inches
Elk Cabin	8,210	36.3 inches

Table 2. 2015 NRCS SNOTEL Data, Santa Fe Watershed as of June 2015.

According to the Western Regional Climate Center, Santa Fe receives on average 13.84 inches annually of precipitation. National Resource Conservation Service (NRCS) 'SNOTEL' weather stations measure accumulated precipitation. There are two SNOTEL weather stations in the upper Santa Fe River municipal watershed (see Table 2).

Precipitation data is also gathered in two additional locations in Santa Fe. 'Santa Fe Watershed' which is located approximately 3 miles east of the Santa Fe plaza, reported 22.82 inches for the year of 2015. This was 60 percent of the annual precipitation of 13.70 inches for this location. Seton Village (approximately 4.5 miles south of downtown Santa Fe) reported 17.22 inches for the year 2015. This was 85 percent of the annual precipitation of 14.65 inches for this location.

Figure 7. Upper Santa Fe Municipal Watershed. In 2015, precipitation in New Mexico was near to above normal and was ranked as the 5th wettest year on record, and the wettest since 1986.

WATER DEMAND

Per Capita Consumption

A common metric for comparing annual water use and water conservation effectiveness is gallons per capita per day (gpcd). It's derived by dividing the amount of water supplied to the City of Santa Fe by the population of utility customers served. The calculated gpcd *does* include deliveries to wholesale customers, such as Santa Fe County. In 2015, the City's water customers decreased average daily water use from 95 gpcd in 2014 to 90 gpcd in 2015.

The gpcd calculation is based upon the New Mexico Office of the State Engineer's (NM OSE) methodology*, which bases the population served upon the number of water division residential customers multiplied by 2014 American Community Survey (ACS)-derived vacancy rate, and an ACS-based residents per occupied household value. The submittal of the NM OSE gpcd fulfills a compliance requirement with the NM OSE's diversion permit for surface water to the Buckman Direct Diversion facility.

Although water conservation outreach and education programs

contribute to the overall decrease in water consumption, there are several other factors to take into account. The city experienced a net loss in water customers after annexation to the county in which the typically high water use communities of La Tierra and La Campanas were transferred to Santa Fe County. Additionally, outdoor watering accounts for about 40 percent of the City's total annual water use, and as a result of ample precipitation during the monsoon season in 2015, the need for outdoor watering was reduced (see Drought & Precipitation on page 5).

*Prior to utilizing the NM OSE gpcd methodology, the City of Santa Fe Water Division gpcd method, used for the previous seventeen years, determined the population served upon the most recent (2010) U.S. Census population data (adjusted for households that rely solely on domestic well water) and updated it annually utilizing growth rates from annual housing permits.

Figure 8. City of Santa Fe 2015 Gallons per Capita per Day. Demand by Sector

Figure 9. City of Santa Fe gpcd with population, 1995-2015

Contractual & Other Water Demands Santa Fe River

As directed by ordinance, in mid-April of each year the annual target flow allocation is determined based upon projections for the year's anticipated watershed yield. The 2015 flow target was set at 600 acre-feet based upon moisture content in the upper Santa Fe watershed snowpack, with total flows to the Living River amounting to over 2,000 acre-feet in 2015 (see the 2015-16 Santa Fe River Target Flow Hydrograph in Figure 10 on following page).

Figure 10. Santa Fe River Target Flow Hydrograph, 2015-16.

Wholesale Water Deliveries

The City has contracts to deliver wholesale water to the Santa Fe County Water Utility. Since 2011 the Buckman Direct Diversion (BDD) has become the primary source of water for Santa Fe County's water utility. Las Campanas' potable water needs are being met by Santa Fe County's Water Utility under the terms stipulated in a bulk water agreement between Santa Fe County and Las Campanas. The 2005 City/ County Water Resources Agreement provides Santa Fe County with up to 500 acre-feet per year of wholesale delivery water from the City of Santa Fe, with an additional 850 acre-feet available under drought and emergency conditions.

The Santa Fe County Water Utility typically is delivered potable water from the City of Santa Fe when the BDD facility is not producing drinking water due to poor water quality conditions in the Rio Grande. Under the water resources agreement with the City of Santa Fe, Santa Fe County Water Utility took delivery of 105 acre-feet of water in 2015.

Water Bank

New water demand on the City water system requires a water credit from the Water Bank in an equal amount, with the goal being no "net" increase in demand on the water system. The City has a series of ordinances* that require all new projects to offset their water demand to the City of Santa Fe Water Division supply, the options of which include water rights acquisition and water conservation in existing development. By the end of 2015, 214 acre-feet of water was available for allocation to the City's needs or City supported efforts (e.g. new parks, municipal buildings, convention centers, affordable housing dwelling units, and the Santa Fe River). An additional 77 acre-feet was available for sale to small developers. In 2015, 1.8 acre-feet was allocated to affordable housing units, leaving an ending balance of 21 acre-feet. The private developers held a total of 573 acre-feet of water rights and 185 acre-feet of toilet retrofit credits.

*The City's water bank tracks the inflows (credits), allocations (debits), ownership, and designated use. For detailed information, please refer to the following ordinances and city code: 2005 Water Transfer Ordinance, 2009-38 Water Budget Requirements (effective January 1, 2010), and Water Conservation provisions in City Code Chapter 25.

WATER RESOURCES PLANNING

The overall goal of water resources planning is to ensure that our water supplies are managed and protected in an efficient and responsible manner so that the City of Santa Fe's drinking water supply is safe, reliable, and sustainable. Ongoing planning necessitates the management of a suite of water rights purchasing, leasing, and permit compliance efforts.

The management role of water resources planning involves administration of the City's "water bank," which seeks to tie land use development with the availability of requisite water rights (see Water Bank section on page 8).

The other management responsibility is source water protection and watershed management under the City of Santa Fe's Municipal Watershed Management Program, protecting 40% of the City's drinking water supply. Water resources planning and management efforts cover a broad range of duties, including being a good steward of the precious and finite resource: water.

Fiscal Responsibility

The Water Division is committed to managing the water utility to maintain fiscal responsibility to its customers. This is achieved by an annual review of the finance plan and the capital improvement plan (CIP) with the goal of maintaining a high level of service while increasing effectiveness and efficiency. In early 2009, the City Governing Body approved a water rate increase in the amount of 8.2% for five consecutive years. The water utility rate increase was needed to pay for the Buckman Direct Diversion Project, a key component in providing the community with a safe and reliable supply of drinking water, and approximately \$100 million of infrastructure improvements. The last rate increase went into effect July 1, 2013 and the City does not project another increase to take place until 2021.

2016 Water Demand and Supply Picture

In the chart below, the 2016 projected demand (black line) is approximately 9,547 acre-feet over the 12 month period. The BDD annual production is projected to be 4,576 acre-feet, Canyon Road Water Treatment Plant is projected to produce 3,200 acre-feet, the City Wells are projected to produce 1,133 acre-feet, and Buckman Wells are projected to produce 638 acre-feet over the 12 month period.

Figure 11. 2016 Projected Monthly Production by Supply Source

City of Santa Fe, Water Division Water Production Update Public Utilities Commission Meeting May 4, 2016

Filter Plant Demolition

Asbestos abatement and building demolition of the old Canyon Road Filter Plant (near corner of Cerro Gordo and Upper Canyon Road) has been completed. A pressure reducing valve will be installed at the site of the old PNM substation. Work was due to be completed by the end of April but may extend into May because of delays caused early on by inclement weather. The site will be contoured and reseeded for possible future use by the City, as part of the Dale Ball Trails network.

Water Production for March (through 04/19/2016)

Water production at the Canyon Road Treatment Plant (CRWTP) decreased from February production levels, and totaled 14.32 million gallons (MG) for the first 14 days of April and completely shut down for maintenance on the morning of April 15th. This represents a daily average of 1.02 million gallons per day (MGD) for that facility. CRWTP production levels have been scaled back to further accommodate the filling of McClure and increased production by BDD. City Wells were not used during the month of March, except for .022 MG used to increase distribution line pressures on a few occasions when needed. The Buckman Wells were not utilized for production in April.

BDD's total production of 117.44 MG was split between Entry Point 04A at 90.9 MG, and Entry Point 05A at 26.55 MG. Total Production for the month of March from all City water sources, through April 19th was 131.75 MG. This represents an average of approximately 6.934 MGD and an increase of approximately 0.48 MGD over the daily demand (6.45 MGD) for the month of March.

Nichols Reservoir storage levels were at 128.07 (354 ac. ft.), or a 59.42% storage level on April 19th. Flows out of the reservoir were increased to accommodate a slight increase in Living River flows and early calls for irrigation water on April 3rd The storage level of McClure Reservoir was increased to 507.16 MG by April 19th, or approximately46.54% of capacity. The level of this reservoir has been increasing at approximately 1.0% of capacity every 2-3 days in late April at current inflow levels of reaching 6.7 MGD on this date and ranging between 2.5 MGD and 6.7 MGD for the month.. Outflow from McClure was kept to approximately 1.0 MGD or 1.55 cubic feet per second (cfs). The City is still filling McClure in conformance with the Office of State Engineer (OSE) guideline of less than one foot in surface elevation per day.

(Note: On Friday- April 22nd the City of Santa Fe was notified by the Interstate Stream Commission you that using accounting method-2, Usable water in Rio Grande Project storage dropped below 400,000 acre-feet. As a result, the Rio Grande Compact native water storage restriction on reservoirs in the Rio Grande Basin constructed after 1929, including El Vado Reservoir, all Corps reservoirs, and a portion of the storage in Nichols and McClure reservoirs, went into effect as of April 22nd, 2016. The City had anticipated this return to Article 7 restriction(s) under the Rio Grande Compact based on information provided earlier by the ISC. The City will meet the Article 7 restrictions by only storing an additional pre-Compact pool volume of 1031 acre feet (345,728,364 MG) in Nichols and McClure while under Article 7. The City is also considering alternatives for additional storage above the 1061 pre-compact pool.) Snow depth in the upper watershed had increased 11.0 inches from a late March level of 44.0 inches to 55.0 inches on April 20th. Snow-water equivalent (SWE) for the Santa Fe SNOTEL Station (elevation: 11,445 ft.) is currently 19.2 inches as compared to the 30 yr. median value of 18.5 inch (104% of median). This is also a 2.0 inch increase in SWE than the 17.2 inches reported to the PUC for March. (* *Median for this station is calculated from values obtained during the 30-yr period of 1981-2010*)

Consumer Confidence Reports (Calendar Year 2015 results)

The Source of Supply Section has completed a draft for printing and dissemination to all City of Santa Fe Water System customers and Santa Fe citizens. A copy of that draft has been attached for the PUC's information. Final dissemination of CCRs to all City of Santa Fe Water System customers is required under the Safe Drinking Water Act by July 1, 2016. It is our goal to disseminate reports in customer bills starting with a billing cycle starting in early to mid-May.

Once again, the City of Santa Fe Water System is in full compliance with all SDWA drinking water standards, as well as all required monitoring, analytical and reporting requirements. The City of Santa Fe met all of the Action Levels prescribed by the federal Lead (0.015 mg/l) and Copper Rule for all samples taken in 2015 Although the LCR requires that only the 90th percentile of public water supply system's samples meet the action levels for lead (0.015 mg/l) and copper (1.3 mg/l), all of the City's 30 samples met the action level. Recent stories about facilities in Santa Fe with lead problems can most likely be attributed to the fact that these facilities have their own supply of water that is used exclusively, or mixed with City water. Following the adoption of the 1991 LCR, the City of Santa evaluated and strengthened its treatment of water supplies for corrosion control, and took action to replace lead and copper pipelines and distribution system components to the maximum extent possible.

Baca Street Well

The Source of Supply Section and Environmental Compliance Office received an update from the New Mexico Environment Department. A work plan for future investigation of the site was submitted by

PNM's contractor during the second week of April for investigation of contamination at the site and is currently under review by a project office in the NMED Petroleum Storage Tank Bureau (PSTB). The City's Source of Supply Section has requested a copy of this proposed investigation work plan and reminded the NMED-PSTB and PNM of the commitments made during negotiation of the current Memorandum of Understanding (MOU) covering the site to involve the City and solicit its comments and concerns with respect to all stages of site investigation and remediation.

Drought, Monsoon/El Nino, and ESA Update

Drought conditions have eased this past year due to the reappearance of a strong El Nino, although the February/March time period for this year was the driest on record. NOAA's latest update (04/25/16) indicates that El Nino conditions are present, but weakening **with increasing likelihood for La Nina conditions to develop by the fall (hot/dry) conditions**. Dry conditions in 2016 could present significant challenges to all water purveyors, water utilities, and irrigators going forward into the summer/fall if there is not significant filling and carry-over storage in regional reservoirs. Regional reservoir levels on the upper Santa Fe River, Rio Grande, and Chama Rivers are still low but rising slowly due to warmer temperatures and resultant snowmelt runoff. There are no water-related Endangered Species Act (ESA) updates. Updates on ESA issues will be made as needed. Rio Grande Compact Article VII storage restrictions went back into effect 4/22/16, which means the City will not be allowed to impound "native" runoff into Nichols and McClure Reservoirs above the pre-Compact pool of 1,061 AF. Updates to this condition will be made as needed.

City of Santa Fe SJCP Reservoir Storage as of February 16, 2016:

Heron:

5,196 AF (2015 SJCP water must be vacated by September 31, 2016 pursuant to a BoR waiver).

El Vado:

0 AF (Temporary storage, will be moved to Abiquiu as part of environmental winter/spring flow releases)

Abiquiu:

10,163 AF SJCP carry-over from previous years, no time limit to vacate due to storage agreement with ABCWUA

TOTAL:

15,359 AF

Contaminant	Units	MCL	MCLO	City Well Plats"	Sample Date	Buciesan Tank	Sample Date	Chargen Read	Sample Date	Buchman RWTP	Sample Date	Violation	Typical Bource
Organic Contaminanta	200	-		- 100	280				-		-	-	
1,1,1-Trichloroethans	ppb	200	200	0.1 (ND-0.1)	2014	ND	2014	ND	2014	ND	2014	No	Discharge from matal degreasing sites and other factories
1,1-Dichloroethylene	ppb	7	7	0.21 (ND-0.21)	2014	ND	2014	ND	2014	ND	2014	No	Discharge from industrial chemical factories
,2-Dichloroethane	abp	5	2810	0.20 (ND - 0.20)	2014	ND	2014	ND	2014	ND	2014	No	Discharge from industrial chemical factories
otrachloroathylene	ppb	5	2970	0.28 (ND - 0.28)	2014	ND	2014	ND	2014	ND	2014	No	Discharge from factories and dry cleaners
ynthatic Organic Contamin	unts 🔀		-32		-	-			- 200			-	
thylene Dibromida	ppb	0.05	zero	0,007 (ND - 0.007)	2014	ND	2014	ND	2014	ND	2014	No	Discharge from petroleum refinaries
norganic Contaminants	-										-	-	
kraenic	ppb	10	0	4.0 (1.0 - 4.0)	2014	2	2014	ND	2014	ND	2015	No	Erosion of natural deposits, Runoff from orchard Runoff from glass and electronics production wastes
arium	ppm	2	2	0.8 (0.1 - 0.8)	2014	ND	2014	ND	2014	ND	2015	No	Discharge from drilling wastes; Discharge from metal refineries; Brosion of natural deposits
kromate	ppb	10	2970	NA	NA	NA	NA	NA	NA	7,3 (ND -7,3)	2015	No	Byproduct of drinking water disinfection
hromium	ppb	100	100	1 (ND-1)	2014	ND	2014	ND	2015	ND	2015	No	Discharge from steel and pulp mills; erosion of natural deposits
kuaride	ppm	4	4	0.16 (0.14 - 0.16)	2014	0.4	2014	0.11	2015	0.37	2015	No	Erosion of natural deposits; Water additive whi promotes strong teeth; Discharge from fertilizer and aluminum factories
Hrato (as Nj	ppm	10	10	6.65 (3.03 - 6.65)	2015	0.18	2015	0.12	2015	0.19	2015	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion from natural deposits
adloactive Contaminants	-02-	-	-		-10-			-		->00+	-	-	
noes Alpha Emitters	PCIL	15	0	4.4 (1.9-4.4)	2014	4.2	2014	ND	2014	12	2014	No	Erosion of natural deposits
ross Beta/Photon Emilitars	PCIL	50*	NA	1.5 (ND - 1.5)	2014	23	2014	1.4	2014	2.3	2014	No	Decay of natural and man-made deposits.
adium 226/228	PCIA	5	0	0.77 (0.10 - 0.77	2014	0.07	2014	0.18	2014	0.1	2014	No	Erosion of natural deposits
anium	ppb	30	0	2.0 (ND-2.0)	2014	2.0	2014	ND	2014	1	2014	No	Erosion of natural deposits;
rface Water Contaminants	>:::+		-		-		()	<->))<	->		-	-	
rbidky ⁴ (highest single naturement)	NTU	TT = 1,0	0	NA	NA	NA	NA	0,33	2015	0,18	2015	No	Soil Runoff
ribidity ^d (Rowest monthly %	NTU	TT = % <0.3 NTU	0	NA	NA	NA	+ NA	100.0%	2015	100.0%	2015	No	Soil Runoff
stal Organic Carbon (TOC)	NA	TT (35%-45%	NA	NA	NA	NA	NA	53% to 64%	2015	NA	NA	No	Naturally present in the environment

City of Santa Ta 2014 Water Ouglity Table

Note:

- a) EPA considers 50 pCi/L to be the level of concern for beta particles. b) Alternative compliance criteria used to meet TOC removal
- c) Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
- d) City wellfield: Alto, Agua Fria, Ferguson, Osage, Santa Fe, St. Mikes & Torreon.
- e) Buckman Wells 1-13 and Northwest Well.

Key to Units, Terms and Abbreviations NA: Not Applicable.

ND: Not Detected.

 $\mathbf{r} = \mathbf{c} =$

- NTU: Nephelometric Turbidity Units.
- ppm: parts per million, or milligrams per liter (mg/L).
- ppb: parts per billion, or micrograms per liter (µg/L).
- pCi/L: picocuries per liter (a measure of radioactivity).
- µg/L: Number of micrograms of substance per liter of water.
- mg/L: Number of milligrams of substance per liter of water.

µmhos/cm: Micromhos per centimeter or μ S/cm (microsiemens per centimeter) – a measure of electrical conductivity in water due to the presence of dissolved inorganic ions (e.g., calcium, chloride, sodium, etc.).

Pt-Co units: Platinum-Cobalt color units - a measure of color also called the "Hazen Scale" or "APHA color", as defined in ASTM International Standard D1209

(Range): The range represents the highest and low values. Range values are not provided if only one sample was taken during the range period

AL: Action level: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

LRAA: Locational running annual average - the average of analytical results for samples at a particular monitoring location during the previous four calendar quarters. LRAA at each sampling location must be below the MCL (0.060 mg/L for Total Haloacetic Acids and 0.080 mg/L for Total Trihalomethanes)

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water, MCL's are set as close to the MCLGs as feasible using the best available treatment technology

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants

Secondary MCL (SMCL): Non-mandatory water quality standards for certain contaminants established as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color and odor. These contaminants are not considered to present a risk to human health at the SMCL.

TT: Treatment Technique: a required process intended to reduce the level of a contaminant in drinking water.

The City of Santa Fe's Water Division (the City) is pleased to provide the 2015 Water Quality Report. A safe and dependable water supply is vital to our community and is the primary mission of the City. This report is provided annually and contains information on the quality of water obtained throughout the calendar year. In 2015, the City's drinking water met all U.S. Environmental Protection Agency (EPA) and State drinking water quality limits. The report contain additional details about where your water comes from, what it contains, and how it compares to standards set by federal and state regulatory agencies. It also provides educational information on contaminants which may y be a concern.

Sources of Supply The City was served by four distinct sources of supply in 2015. The 17,000 acre Santa Fe Watershed provides surface runoff to the Santa Fe River where it is stored in the McClure and Nichols Reservoir prior to treatment. Surface water from the Santa Fe River and Rio Grande is treated through conventional and advanced treatment processes at the Canvon Road Water Treatment Plant and Buckman Regional Water Treatment Plant (BRWTP), respectively. The City Well Field is mostly located in close proximity to the Santa Fe River and consists of 8 active wells located within the City limits of Santa Fe. The Buckman Well Field consists of 13 wells located near the Rio Grande, approximately 15 miles northwest of Santa Fe. All four sources are treated with chlorine for protection of customers against disease causing microorganisms (pathogens), including bacteria and viruses. Fluoride is added to the water supply to benefit the community as recommended by public health professionals.

In 2011, the Buckman Direct Diversion (BDD) Project surface water supply was successfully integrated into the municipal distribution system and operated in conjunction with the City's pre-existing sources of supply throughout 2015. The surface water treated at the BRWTP is taken directly from the Rio Grande. BDD not only improves sustainability for the area but also increases the City's resilience under drought conditions, replacing current groundwater pumping that cannot be sustained, and making the City's wells available as drought and emergency reserves rather than sources used to meet daily water demands.

Do I need to take special precautions? **DO 1 need to take special precautions?** Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These individuals should seek advice about the safety of their drinking water supply from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

<u>Water Qualit</u>

City of Santa Fe Water Division P.O. Box 909, Santa Fe, NM 87504

Source Water Assessment and its Availability

The New Mexico Environment Department (NMED) completed a Source Water Assessment for the City of Santa Fe. This assessment includes a determination of source water protection areas and an inventory of pollution sources within the areas of concern. NMED concluded: "The Susceptibility Analysis of the City of Santa Fe water utility reveals that the utility is well maintained and operated, and the sources of drinking water are generally protected from potential sources of contamination based on an evaluation of the available information. The susceptibility rank of the entire water system is **"moderately low"**. A copy of the Assessment is available by contacting NMED at 505-476-8620.

City ordinances adopted in 2005 built upon the recommendations in the Source Water Assessment. The "Safe Drinking Water and Source Water Protection" and the "Stormwater Illicit Discharge Control" ordinances provide additional controls and protections for the City's ground and surface water supplies. In addition, the City established a Stormwater Program with the goal of reducing pollutant discharged to the Santa Fe River. Please contact 955-2134 to report illegal dumping in storm drains, streets and arroyos.

En Espanol

Este reporte contiene información importante sobre la calidad del agua en Santa Fe. Si tiene alguna pregunta o duda sobre este reporte puede hablarle a Victor Archuleta al teléfono 505-955-4370.

Why are there Contaminants in my Drinking Water?

Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. nts in drinking water may

Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals can be naturally-occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides, may come from a variety of sources, such as agriculture, urban storm-water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, ter runoff, and septic syste storm wa

Radioactive contaminants, which can be naturally occurring, man-made from nuclear facilities and atmospheric deposition from former above ground testing, or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA pre-scribes regulations that limit the amount of certain contamibeing regulations that this the amount of certain contami-nants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Nitrates

levels above to ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider

Arsenic

The drinking water standard for arsenic is 10 μ g/L. The City's drinking water continued to meet this standard throughout 2015. Arsenic occurs naturally in the earth's crust. When these arsenic-containing rocks, minerals, and soil erode, they release arsenic into ground water. While our drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. The EPA standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems

cooperation with Los Alamos National Laboratory (LANL) and the New Mexico Environment Department, the City currently monitors Buckman Wells 1, 6 and 8 for LANL derived contamination on a quarterly basis. Samples are analyzed for radionuclides, general inorganic chemicals metals, high explosives and organics. This repeat sampling has occurred during the years 2001 – 2015 and has indicated that Laboratory-derived radionuclides are not present in the Buckman Wells 1, 2, 6 and 8. The results do indicate the buckman wears 1, 2, 6 and 8, the results do indicate detectable levels of radionuclides associated with natural sources. These wells are part of the 13 wells that make-up the Buckman Wellfield. When these wells are used, water from these wells is delivered to the Buckman Tank prior to distribution into the system.

Cryptosporidium

Cryptosporidium is a protozoan parasite that is common in surface waters. The oocyst is the transmission stage of the organism. Cryptosporidium is introduced into our source advectory of the our source populations. Although the organism is readily removed by the conventional treatment Road Water Treatment choirne and the primary reason to determine if additional treatment is required. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. In Aoril 2007 the City becan a two-year study to determine

In April 2007 the City began a two-year study to determine the average Cryptosporidium concentration in source water entering the Canyon Road Water Treatment facility. The sampling portion of the study was completed in March of 2009. The study is part of the requirements contained in the 2006 USEPA Long-Term Enhanced Surface Water Treatment Rule. Cryptosporidium was detected in a single untreated sample in each of the following months: December of 2007, September 2008 and October 2008. The highest 12-month consecutive mean for this study was 0.018 oocysts/L Since the concentration is <0.075 oocysts/L no additional treatment at the Canyon Road Water Treatment Facility was necessary. The City began a second round of sampling, one sample a month, starting in October 2015 and scheduled to end in September 2017. No Cryptosporidium oocysts were detected in three samples collected in calendar year 2015 (October, November, and December). As with Cryptosporidium oocysts, no Giardia Lamblia cysts were detected in the three samples collected during the last three months of 2015. Any new water system treating surface water such as BDD In April 2007 the City began a two-year study to determine

Any new water system treating surface water such as BDI is required to monitor Cryptosporidium for 24 consecutiv months. At the BDD the untreated raw Rio Grande wate Cryptosporidium test results range from 0 to 0.4 oocysts/L.

Voluntary Monitoring

The attached "Voluntary Monitoring" Table lists results from voluntary monitoring at entry points into the distribution system associated with BRWTP, City Wells, distribution system associated with BKWIP, City Wells, and the Canyon Road WTP. Since these samples are collected at the point of entry of water into the City's distribution system, the reported concentrations of contaminants may be further diluted in the distribution system through mixing with water from other City sources.

EPA has established secondary maximum contaminant levels (SMCL) for certain contaminants. Secondary Standards are non-enforceable standards that serve as guidelines to assist public water systems in managing their drinking water. The presence of these contaminants typically results from the erosion of natural deposits. Aluminum and manganese containing materials are used as treatment aids in the water treatment process. Other constituents without SMCLs were monitored in 2015 and are reported in the "Voluntary Monitoring Table (these have an "NA" in SMCL column

Contaminant	Units	SMCL	Result	Sample Date
	Buc	kman RWI	P	
hloride	ppm	250	20	2015
PI4		6.5 - 8.5	8.33	2015
Sulfate	ppm	250	48	2015
fotal Dissolved Solids	ppm	500	223	2015
Strontium-90	pCi/L		0.01	2015
Nickel	ppm	10	ND	2015
Fritium	pCi/L		ND	2015
Dranium-234	pCi/L		0.949	2015
ranium- 135/236	pCi/L		0.447	2015
Uranium-238	pCi/L		0,676	2015
Conductivity	µmhos/cm		340	2015
fotal Ialoacetic acids	ppm		0.0094	2015
lotal Frihalomethanes	ppm		0.0209	2015
Chlorine as Cl2)	ppm		0.75	2015
Sodium	ppm		24	2015
	Cany	on Road W	TP	
odium	ppm		18	2015

tacts for Additional Information:

If you have any questions, comments, or suggestions regarding this report please contact Alex Puglisi at 505-955-4232 or write to: City of Santa Fe Water Division P.O. Box 909, Santa Fe, NM 87504

Microbial and Disinfection Byproducts Rule

The Microbial and Disinfection Byproducts (M/DBP) Rules are a set of interrelated regulations that address risks from microbial Set of interrelated regulations that address fists from microbial pathogens and disinfectants/ disinfection byproducts (DBPS). The Stage 2 Disinfectants and Disinfection by-Products Rule (DBPR) focuses on public health protection by limiting exposure to DBFs (known carcinogens), specifically total trihadomethanes (TTHM) and five haloscetic acids (HAAS), which can form in write it branch disinfectants used to control unionking haloscents water through disinfectants used to control microbial pathogens.

The City of Santa Fe system has eight compliance sampling locations for TTHM and HAA5. Each location is sampled once locations for TTHM and HAA5. Each location is sampled once per quarter. The average of analytical results for DBPs at a given location during the previous four quarterly samples is called the locational running annual average (LRAA). The LRAA at each location must be below the MCL (0.060 mg/L for HAA5 and 0.080 mg/L for TTHM). Results shown in the Table below indicate that the individual quarterly values during 2015 ranged from 0.001 to 0.027 mg/L for HAA5 and 0.029 to 0.069 mg/L for TTHM. The highest LRAA was 0.0101 mg/L for HAA5 and 0.0245 mg/L for TTHM, indicating that the system is in compliance. compliance.

	MCLT	MCLG	Sample Year	Highest LRAA†	Range	2015 1	Typical Source
aloacetic cids (AA5s)	.060	NA	2015	.0101	Low † 0.0013	High † 0.0270	By-product of drinking water chlorination
ntal ihalo- ethane THMs)	.080	NA	2015	.0245	Low † 0.0289	High † 0.0690	By-product of drinking water chlorination
t = units	are pp	m (mg/	L)	\$ = in	dividual s	amples at	all locations

The Stage 2 DBPR also regulates the maximum residual for disinfectants: chlorine dioxide, free chlorine, and chloramines. The disinfectants are water additives used to control microorganisms, particularly as a residual disinfectant in distribution system pipes.

The City of Santa Fe water system uses free chlorine as a disinfectant. For the year 2015, sampling was performed at 80 moni-toring locations each month. The results are summarized in the table below.

	MRDU	MRDIG	Sample	Highest Level	Rang	2015 Hight	Violation	Typical Source
Chlorine Residual	4.0	4	2015	1.19	0.00	1.19	No	Water additives used to control microbes

Asbestos The most recent of

The most recent sample for asbestos in the distribution system was collected on December 16, 2013. No asbestos fibers were detected in the sample collected (detection limit 0.2 million fibers per liter or MFL). Some people who driak water contain-ing asbestos in excess of the MCL over many years may have an increased risk of developing benign intestinal polyps.

-	1.3	1.3	8.60	
Lood (ppb)		.015	0.0022	
* Results	sofn	nonite	oring are	eu

sed to determine the concentration at the 90th percentile (e.g., if 100 samples analyzed, the concentration at the 90th highest sample). Based on the number of samples analyzed in 2015 the 90th percentile is the 27th sample for copper and lead.

** AL = Action Level

The table includes only those constituents found above detection limits during 2015 sampling, or during sampling in previous years if not analyzed during 2015. The EPA requires monitoring for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. The City is required to test for over 80 contaminants, and the vast majority of these contaminants were not found above detection limits Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800) 426-4791, or visiting www.epa.gov/safewater. Please view separate 2015 Water Quality Table

Lead and Copper Rule

Tests for lead and copper are taken from customer taps located throughout the City once every three years. The most recent round of lead and copper testing took place in August 2015. The next survey will be performed in 2018. If present, elevated here are used to be the below performed to a straight of the levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water s primarily from materials and components associated with service lines and home plumbing.

Unregulated Contaminant Monitoring Rule (UCMR)

EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act (SDWA). Unregulated contaminant monitoring helps EPA to determine where certain contaminants occur and whether the Agency should consider regulating those contaminants in the future. UCMR sampling for the EPA required four quarterly periods was completed in the Santa Fe water system between March and December 2015.

UNREGULATED COSTAMINAST MONTORING							
NAME	UNIT	REPORTED LEVELS	RANGE LOW HIG				
1,4-Dioxane	ppb	0.080	0.078	0.082			
Chlorate	ppb	127	23	380			
Chromium	ppb	0.75	0.22	2.0			
Hexavalent Chromium (Dissolved)	ppb	0.46	0.03	1.9			
Molybdenum	ppb	3.7	2.1	5.3			
Strontium	ppb	166	35	430			
Vanadium	nnb	2.9	0.2	9.2			

Average of all of 2015 UCMR results

The average of all of the monitoring results and the range of detections for any detected unregulated contaminants for which state or federal rules require monitoring are presented in the table. Other contaminants were collected and analyzed, as required by EPA, but they were not found above detection limits in any City of Santa Fe samples, and therefore are not included in the above table.

Conserve Water ... every drop counts

0

-11 2 195 2015 City of Santa Fe Water Quality Table

The table on the following page lists contaminants which:

1. have associated primary Maximum Contaminant Levels (MCLs) that are regulated and

2. were detected in testing conducted by the City and New Mexico Environment Department.